LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.1.1</th>
<th>Heavy metals cycle in nature</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.2.1</td>
<td>Molecular structure of the primary cell wall of the plant</td>
<td>34</td>
</tr>
<tr>
<td>Fig.2.2</td>
<td>The chemical structure of Cellulose</td>
<td>35</td>
</tr>
<tr>
<td>Fig.2.3</td>
<td>The chemical structure of Xylan</td>
<td>36</td>
</tr>
<tr>
<td>Fig.2.4</td>
<td>The chemical structure of Pectin</td>
<td>37</td>
</tr>
<tr>
<td>Fig.4.1</td>
<td>Effect of pH on the final concentration of total chromium, Cr(VI) and Cr(III) during the biosorption of Cr(VI) by (a) tamarind bark (b) gulmohar fruit shell (c) potato peel waste</td>
<td>74</td>
</tr>
<tr>
<td>Fig.4.2</td>
<td>Proposed mechanism of the Cr(VI) biosorption by natural biomaterials</td>
<td>76</td>
</tr>
<tr>
<td>Fig.4.3</td>
<td>Effect of initial concentration of Cr(VI) on the percentage removal and uptake of chromium by the used biosorbents</td>
<td>77</td>
</tr>
<tr>
<td>Fig.4.4</td>
<td>Effect of time and biosorbent dosage on chromium (VI) concentration decay during biosorption of Cr(VI) by (a) tamarind bark (b) gulmohar fruit shell and (c) potato peel waste</td>
<td>79</td>
</tr>
<tr>
<td>Fig.4.5</td>
<td>Effect of time and initial concentration of Cr(VI) on chromium (VI) concentrations during biosorption of Cr(VI) by the used biosorbents</td>
<td>80</td>
</tr>
<tr>
<td>Fig.4.6</td>
<td>Residual concentration of total chromium, Cr(VI) and Cr(III) as a function of time during the biosorption of Cr(VI) by (a) tamarind bark (b) gulmohar fruit shell and (c) potato peel waste</td>
<td>81</td>
</tr>
<tr>
<td>Fig.4.7</td>
<td>Langmuir adsorption isotherm of chromium by the used biosorbents</td>
<td>83</td>
</tr>
<tr>
<td>Fig.4.8</td>
<td>Freundlich adsorption isotherm of chromium by the used biosorbents</td>
<td>83</td>
</tr>
<tr>
<td>Fig.4.9</td>
<td>Dubinin-Radushkevich adsorption isotherm of chromium by the used biosorbents</td>
<td>84</td>
</tr>
<tr>
<td>Fig.4.10</td>
<td>Effect of biosorbents particle size on the uptake of chromium by tamarind bark, gulmohar’s fruit shell and potato peel waste</td>
<td>87</td>
</tr>
</tbody>
</table>
Fig. 4.11 Pareto chart of standardized effects of different factors on K_1 for removal of Cr(VI) by tamarind bark

Fig. 4.12 Pareto chart of standardized effects of different factors on K_1 for removal of Cr(VI) by gulmohar’s fruit shell

Fig. 4.13 Pareto chart of standardized effects of different factors on K_1 for removal of Cr(VI) by potato peel waste

Fig. 4.14 The 3D response surface plots of the effect of biosorbents dose, initial concentration of Cr(VI) and rotation speed on the removal rate of Cr(VI) by tamarind bark

Fig. 4.15 The 3D response surface plots of the effect of biosorbents dose, initial concentration of Cr(VI) and rotation speed on the removal rate of Cr(VI) by gulmohar’s fruit shell

Fig. 4.16 The 3D response surface plots of the effect of biosorbents dose, initial concentration of Cr(VI) and rotation speed on the removal rate of Cr(VI) by potato peel waste

Fig. 4.17 Effect of co-ions on the chromium uptake by tamarind bark

Fig. 4.18 Effect of co-ions on the chromium uptake by gulmohar’s fruit shell

Fig. 4.19 Effect of co-ions on the chromium uptake by potato peel waste

Fig. 4.20 Sorption isotherms of chromium on (a) tamarind bark (b) gulmohar’s fruit shell (c) potato peel waste in single and binary systems

Fig. 4.21 Removal of hexavalent chromium from industrial effluents by different dosages of tamarind bark

Fig. 4.22 Removal of hexavalent chromium from industrial effluents by different dosages of gulmohar’s fruit shell

Fig. 4.23 Removal of hexavalent chromium from industrial effluents by different dosages of potato peel waste

Fig. 4.24 FTIR spectra of tamarind bark, gulmohar’s fruit shell and potato peel waste before and after interaction with Cr(VI)
Fig. 4.25 The mechanism of hexavalent chromium removal using the natural biosorbents

Fig. 4.26 Effect of pH on the removal efficiency of iron by tamarind bark, gulmohar’s fruit shell and potato peel waste

Fig. 4.27 Effect of initial concentration of Fe(II) on the percentage removal and uptake of iron by the used biosorbents

Fig. 4.28 Langmuir adsorption isotherm of iron by the used biosorbents

Fig. 4.29 Freundlich adsorption isotherm of iron by the used biosorbents

Fig. 4.30 Dubinin-Radushkevich adsorption isotherm of iron by the used biosorbents

Fig. 4.31 Effect of time and biosorbent dosage on the removal efficiency of iron by (a) tamarind bark (b) gulmohar fruit shell and (c) potato peel waste

Fig. 4.32 Pseudo second-order kinetic plot for the sorption of iron by (a) tamarind bark, (b) gulmohar’s fruit shell and (c) potato peel waste

Fig. 4.33 Intra-particle diffusion plot for the sorption of iron by (a) tamarind bark, (b) gulmohar’s fruit shell and (c) potato peel waste

Fig. 4.34 Effect of rotation speed on the uptake of iron by tamarind bark, gulmohar’s fruit shell and potato peel waste

Fig. 4.35 Effect of biosorbents particle size on the uptake of iron by tamarind bark, gulmohar’s fruit shell and potato peel waste

Fig. 4.36 Effect of co-ions on the biosorption of iron by (a) tamarind bark, (b) gulmohar and (c) potato peel waste biosorbents

Fig. 4.37 The residual plots for the iron uptake by tamarind bark

Fig. 4.38 The residual plots for the iron uptake by gulmohar’s fruit shell

Fig. 4.39 The residual plots for the iron uptake by potato peel waste
Fig. 4.40 Contour plots of the effect of biosorbents dose, initial concentration of Fe (II), rotation speed and biosorbents particle size on the iron uptake by tamarind bark 144

Fig. 4.41 Contour plots of the effect of biosorbents dose, initial concentration of Fe (II), rotation speed and biosorbents particle size on the iron uptake by gulmohar’s fruit shell 144

Fig. 4.42 Contour plots of the effect of biosorbents dose, initial concentration of Fe (II), rotation speed and biosorbents particle size on the iron uptake by potato peel waste 145

Fig. 4.43 Sorption isotherms of iron on (a) tamarind bark (b) gulmohar’s fruit shell (c) potato peel waste in single and binary systems 149

Fig. 4.44 Removal of iron from industrial effluents by different dosages of tamarind bark, gulmohar’s fruit shell and potato peel waste 151

Fig. 4.45 FTIR spectra of tamarind bark, gulmohar’s fruit shell and potato peel waste before and after biosorption of iron 152

Fig. 4.46 Effect of pH on the removal efficiency of Ni (II) by tamarind bark, gulmohar’s fruit shell and potato peel waste 155

Fig. 4.47 Effect of initial concentration of Ni(II) on the percentage removal and uptake of nickel by the used biosorbents 156

Fig. 4.48 Langmuir adsorption isotherm of nickel by the used biosorbents 157

Fig. 4.49 Freundlich adsorption isotherm of nickel by the used biosorbents 157

Fig. 4.50 Dubinin-Radushkevich adsorption isotherm of nickel by the used biosorbents 158

Fig. 4.51 Effect of time and biosorbent dosage on the removal efficiency of nickel by (a) tamarind bark (b) gulmohar fruit shell and (c) potato peel waste 163

Fig. 4.52 Pseudo second-order kinetic plot for the sorption of Ni(II) by (a) tamarind bark, (b) gulmohar’s fruit shell and (c) potato peel waste 164
Fig. 4.53 Effect of rotation speed on the uptake of nickel by tamarind bark, gulmohar’s fruit shell and potato peel waste

Fig. 4.54 Effect of biosorbent’s particle size on the uptake of nickel by tamarind bark, gulmohar’s fruit shell and potato peel waste

Fig. 5.55 Effect of co-ions on the biosorption of Ni(II) by (a) tamarind bark, (b) gulmohar and (c) potato peel waste biosorbents

Fig. 4.56 Pareto chart of standardized effect of different factors and combination on the nickel uptake by tamarind bark

Fig. 4.57 Pareto chart of standardized effect of different factors and combination on the nickel uptake by gulmohar’s fruit shell

Fig. 4.58 Pareto chart of standardized effect of different factors and combination on the nickel uptake by potato peel waste

Fig. 4.59 Sorption isotherms of nickel on (a) tamarind bark, (b) gulmohar’s fruit shell, (c) potato peel waste in single and binary systems

Fig. 4.60 Residual concentration of nickel after biosorption from industrial effluent by tamarind bark, gulmohar’s fruit shell and potato peel waste

Fig. 4.61 FTIR spectra of tamarind bark, gulmohar’s fruit shell and potato peel waste before and after interaction with Ni(II)

Fig. 4.62 Effect of pH on the removal efficiency of Zn(II) by tamarind bark, gulmohar’s fruit shell and potato peel waste

Fig. 4.63 Effect of initial concentration of zinc on its percentage removal and uptake by the tested plant materials

Fig. 4.64 Langmuir adsorption isotherm of zinc by the used biosorbents

Fig. 4.65 Freundlich adsorption isotherm of zinc by the used biosorbents

Fig. 4.66 Dubinin-Radushkevich adsorption isotherm of zinc by the used biosorbents

Fig. 4.67 Effect of time and biosorbent dosage on the removal efficiency of zinc by (a) tamarind bark, (b) gulmohar fruit shell and (c) potato peel waste
Fig.4.68 Pseudo second-order kinetic plot for the sorption of zinc by (a) tamarind bark, (b) gulmohar’s fruit shell and (c) potato peel waste

Fig.4.69 Effect of rotation speed on the uptake of zinc by tamarind bark, gulmohar's fruit shell and potato peel waste

Fig.4.70 Effect of biosorbent size on the uptake of zinc by tamarind bark, gulmohar’s fruit shell and potato peel waste

Fig.4.71 Contour plots of the effect of biosorbents dose, initial concentration of zinc, rotation speed and biosorbents particle size on the zinc uptake by tamarind bark

Fig.4.72 Contour plots of the effect of biosorbents dose, initial concentration of zinc, rotation speed and biosorbents particle size on the zinc uptake by gulmohar’s fruit shell

Fig.4.73 Contour plots of the effect of biosorbents dose, initial concentration of zinc, rotation speed and biosorbents particle size on the zinc uptake by potato peel waste

Fig.4.74 Effect of co-ions on the zinc uptake by tamarind bark

Fig.4.75 Effect of co-ions on the zinc uptake by gulmohar's fruit shell

Fig.4.76 Effect of co-ions on the zinc uptake by potato peel waste

Fig.4.77 Sorption isotherms of zinc on (a) tamarind bark (b) gulmohar’s fruit shell (c) potato peel waste in single and binary systems

Fig.4.78 Residual concentration of zinc after biosorption from effluent-2 by tamarind bark, gulmohar’s fruit shell and potato peel waste

Fig.4.79 Residual concentration of zinc after biosorption from effluent-3 by tamarind bark, gulmohar's fruit shell and potato peel waste

Fig.4.80 FTIR spectra of tamarind bark, gulmohar’s fruit shell and potato peel waste before and after interaction with zinc