LIST OF FIGURES

Figure 1.1: A plot of solar activity taken over twenty three solar cycles ... 6

Figure 1.2: The schematic diagram of the interaction of cosmic particles with earth's atmosphere .. 8

Figure 1.3: The schematic diagram of earth's magnetic field lines around the earth 8

Figure 1.4: The schematic diagram of ATLAS detector .. 10

Figure 2.1: The comparison of energy band diagram of Si BJT and graded base SiGe HBT, both biased in forward active mode at low injection .. 31

Figure 2.2: The doping profile in first generation SiGe HBT .. 32

Figure 2.3: The schematic cross section of 50 GHz SiGe HBT ... 32

Figure 2.4: The schematic cross section of 200 GHz SiGe HBT .. 33

Figure 2.5: The photograph of 28 pin DIP packages containing 50 GHz (L10) and 200 GHz (C3) SiGe HBTs .. 34

Figure 2.6: Photograph of Keithley dual channel source meter 2636A with measurement box with 28 pin DIP package .. 35

Figure 2.7: The circuit diagram to measure forward mode characteristics of NPN SiGe HBTs using three SMU measurement set-up ... 36

Figure 2.8: The circuit diagram to measure inverse mode Gummel characteristics, neutral base recombination and avalanche multiplication of carriers of SiGe HBTs 37

Figure 2.9: The Gamma Chamber 5000 at Pondicherry University, Puducherry 40

Figure 2.10: The schematic cross section of Gamma chamber 5000 .. 41

Figure 2.11: The cross sectional view of 15UD Pelletron accelerator at IUAC, New Delhi 42

Figure 2.12: Photograph of high vacuum irradiation chamber in material science beam line hall at IUAC, New Delhi .. 43

Figure 2.13: (a) A view of in-situ experimental set-up at material science beam line. (b) Electrical connectors connected to in-situ ladder. (c) In-situ ladder showing electrical connections from bread-board to feed-through; (inset: bread-board on A-face having 18 to 20 connections). (d) SiGe packages on B-face inside the irradiation chamber; to the left of B-face is A-face containing an in-situ SiGe package which is facing the ion beam ... 44

Figure 2.14: The customised test flow chart for MIL-STD 883, method 1019 46
Figure 2.15: Dose to fluence conversion graph for different LET radiation. 48
Figure 2.16: High temperature oven used for isochronal annealing from 50°C to 350°C 49
Figure 2.17: High temperature furnace used for isochronal annealing from 400°C to 500°C. .. 49
Figure 3.1: Variation of electronic energy loss (S_e) for different ions in silicon.............. 54
Figure 3.2: Variation of nuclear energy loss (S_n) for different ions in silicon................ 58
Figure 3.3: SRIM simulations showing ionization (eV/Å-ion) damage in 50 MeV Li ion irradiated SiGe HBT... 60
Figure 3.4: SRIM simulations showing ionization (eV/Å-ion) damage in 75 MeV B ion irradiated SiGe HBT... 60
Figure 3.5: SRIM simulations showing ionization (eV/Å-ion) damage in 100 MeV O ion irradiated SiGe HBT... 60
Figure 3.6: SRIM simulations showing displacement damage (displacement/Å-ion) in 50 MeV lithium ion irradiated SiGe HBT... 61
Figure 3.7: SRIM simulations showing displacement damage (displacement/Å-ion) in 75 MeV boron ion irradiated SiGe HBT... 61
Figure 3.8: SRIM simulations showing displacement damage (displacement/Å-ion) in 100 MeV oxygen ion irradiated SiGe HBT... 61
Figure 3.9: Displacement per atom (DPA) in 50 MeV Li ion irradiated SiGe HBT.............. 62
Figure 3.10: Displacement per atom (DPA) in 75 MeV B ion irradiated SiGe HBT........... 62
Figure 3.11: Displacement per atom (DPA) in 100 MeV O ion irradiated SiGe HBT........ 62
Figure 3.12: SRIM simulation of LET and NIEL for 50 MeV Li ion irradiated SiGe HBT... 63
Figure 3.13: SRIM simulation of LET and NIEL for 75 MeV B ion irradiated SiGe HBT.... 63
Figure 3.14: SRIM simulations of LET and NIEL for 100 MeV O ion irradiated on SiGe HBT... 63
Figure 3.15: Comparison of LET and NIEL for different heavy ions in SiGe HBT......... 63
Figure 4.1: The 2-D simulation picture of the SiGe HBT cross section........................... 66
Figure 4.2: Forward mode Gummel characteristics of 60Co gamma irradiated SiGe HBT.. 70
Figure 4.3: Forward mode Gummel characteristics of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT.. 70
Figure 4.4: Forward mode Gummel characteristics of 75 MeV B$^{5+}$ ion irradiated SiGe HBT... 70

Figure 4.5: Forward mode Gummel characteristics of 100 MeV O$^{7+}$ ion irradiated SiGe HBT.. 70

Figure 4.6: Forward mode normalised base current (I_{BPost}/I_{BPre}) of 60Co gamma irradiated SiGe HBT .. 70

Figure 4.7: Forward mode normalised base current (I_{BPost}/I_{BPre}) of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT .. 70

Figure 4.8: Forward mode normalised base current (I_{BPost}/I_{BPre}) of 75 MeV B$^{5+}$ ion irradiated SiGe HBT .. 71

Figure 4.9: Forward mode normalised base current (I_{BPost}/I_{BPre}) of 100 MeV O$^{7+}$ ion irradiated SiGe HBT .. 71

Figure 4.10: The variation in forward mode excess base current at V_{BE} = 0.65 V after gamma and ion irradiation .. 71

Figure 4.11: The variation in forward mode excess base current normalised to 100 for gamma and ion irradiated SiGe HBT .. 71

Figure 4.12: Inverse mode Gummel characteristics of 60Co gamma irradiated SiGe HBT.... 73

Figure 4.13: Inverse mode Gummel characteristics of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT... 73

Figure 4.14: Inverse mode Gummel characteristics of 75 MeV B$^{5+}$ ion irradiated SiGe HBT ... 73

Figure 4.15: Inverse mode Gummel characteristics of 100 MeV O$^{7+}$ ion irradiated SiGe HBT... 73

Figure 4.16: Inverse mode normalised base current (I_{BPost}/I_{BPre}) of 60Co gamma irradiated SiGe HBT... 73

Figure 4.17: Inverse mode normalised base current (I_{BPost}/I_{BPre}) of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT... 73

Figure 4.18: Inverse mode normalised base current (I_{BPost}/I_{BPre}) of 75 MeV B$^{5+}$ ion irradiated SiGe HBT... 74

Figure 4.19: Inverse mode normalised base current (I_{BPost}/I_{BPre}) of 100 MeV O$^{7+}$ ion irradiated SiGe HBT... 74

Figure 4.20: The variation of inverse mode excess base current at V_{BE} = 0.65 V after gamma and ion irradiation .. 75
Figure 4.21: The variation of inverse mode excess base current normalised to 100 for gamma and ion irradiated SiGe HBT

Figure 4.22: The variation in current gain after 60Co gamma irradiation

Figure 4.23: The variation in current gain after 50 MeV Li$^{3+}$ ion irradiation

Figure 4.24: The variation in current gain after 75 MeV B$^{5+}$ ion irradiation

Figure 4.25: The variation in current gain after 100 MeV O$^{7+}$ ion irradiation

Figure 4.26: The peak current gain versus total dose for gamma and ion irradiated SiGe HBTs

Figure 4.27: The current gain normalised to pre irradiation value $\left(\frac{h_{FE_{post}}}{h_{FE_{pre}}} \times 100\right)$ versus total dose for gamma and ion irradiated SiGe HBTs

Figure 4.28: The $\Delta \left(\frac{1}{h_{FE}}\right)$ versus total dose for gamma and ion irradiated SiGe HBTs

Figure 4.29: Neutral base recombination for 60Co gamma irradiated SiGe HBT

Figure 4.30: Neutral base recombination for 50 MeV Li$^{3+}$ ion irradiated SiGe HBT

Figure 4.31: Neutral base recombination for 75 MeV B$^{5+}$ ion irradiated SiGe HBT

Figure 4.32: Neutral base recombination for 100 MeV O$^{7+}$ ion irradiated SiGe HBT

Figure 4.33: The avalanche multiplication for 60Co gamma irradiated SiGe HBT

Figure 4.34: The avalanche multiplication for 50 MeV Li$^{3+}$ ion irradiated SiGe HBT

Figure 4.35: The avalanche multiplication for 75 MeV B$^{5+}$ ion irradiated SiGe HBT

Figure 4.36: The avalanche multiplication for 100 MeV O$^{7+}$ ion irradiated SiGe HBT

Figure 4.37: Output characteristics for 60Co gamma irradiated SiGe HBT at $I_B = 3.75$ μA

Figure 4.38: Output characteristics for 50 MeV Li$^{3+}$ ion irradiated SiGe HBT at $I_B = 3.75$ μA

Figure 4.39: Output characteristics for 75 MeV B$^{5+}$ ion irradiated SiGe HBT at $I_B = 3.75$ μA

Figure 4.40: Output characteristics for 100 MeV O$^{7+}$ ion irradiated SiGe HBT at $I_B = 3.75$ μA

Figure 4.41: The variation in collector saturation current at $V_{CE} = 1$ V for gamma and ion irradiated SiGe HBTs

Figure 5.1: Forward mode Gummel characteristics of 60Co gamma irradiated SiGe HBT
Figure 5.2: Forward mode Gummel characteristics of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT .. 87

Figure 5.3: Forward mode Gummel characteristics of 75 MeV B$^{5+}$ ion irradiated SiGe HBT .. 87

Figure 5.4: Forward mode Gummel characteristics of 100 MeV O$^{7+}$ ion irradiated SiGe HBT .. 87

Figure 5.5: Forward mode normalised base current (I_{BPost}/I_{BPre}) of 60Co gamma irradiated SiGe HBT .. 88

Figure 5.6: Forward mode normalised base current (I_{BPost}/I_{BPre}) of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT ... 88

Figure 5.7: Forward mode normalised base current (I_{BPost}/I_{BPre}) of 75 MeV B$^{5+}$ ion irradiated SiGe HBT ... 88

Figure 5.8: Forward mode normalised base current (I_{BPost}/I_{BPre}) of 100 MeV O$^{7+}$ ion irradiated SiGe HBT ... 88

Figure 5.9: The variation in forward mode excess base current at $V_{BE} = 0.65$ V after gamma and ion irradiation ... 89

Figure 5.10: The variation in forward mode excess base current normalised to 100 for gamma and ion irradiated SiGe HBT ... 89

Figure 5.11: Inverse mode Gummel characteristics of 60Co gamma irradiated SiGe HBT 90

Figure 5.12: Inverse mode Gummel characteristics of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT 90

Figure 5.13: Inverse mode Gummel characteristics of 75 MeV B$^{5+}$ ion irradiated SiGe HBT 90

Figure 5.14: Inverse mode Gummel characteristics of 100 MeV O$^{7+}$ ion irradiated SiGe HBT 90

Figure 5.15: Inverse mode normalised base current (I_{BPost}/I_{BPre}) of 60Co gamma irradiated SiGe HBT 90

Figure 5.16: Inverse mode normalised base current (I_{BPost}/I_{BPre}) of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT 90

Figure 5.17: Inverse mode normalised base current (I_{BPost}/I_{BPre}) of 75 MeV B$^{5+}$ ion irradiated SiGe HBT 91

Figure 5.18: Inverse mode normalised base current (I_{BPost}/I_{BPre}) of 75 MeV B$^{5+}$ ion irradiated SiGe HBT 91
Figure 5.19: The variation in inverse mode excess base current at \(V_{BE} = 0.65 \, \text{V} \) after gamma and ion irradiation ... 92

Figure 5.20: The variation of inverse mode excess base current normalised to 100 for gamma and ion irradiated SiGe HBT ... 92

Figure 5.21: The variation in current gain after \(^{60}\text{Co}\) gamma irradiation .. 93

Figure 5.22: The variation in current gain after 50 MeV \(\text{Li}^{3+} \) ion irradiation ... 93

Figure 5.23: The variation in current gain after 75 MeV \(\text{B}^{5+} \) ion irradiation ... 93

Figure 5.24: The variation in current gain after 100 MeV \(\text{O}^{7+} \) ion irradiation ... 93

Figure 5.25: The peak current gain versus total dose for gamma and ion irradiated SiGe HBTs .. 94

Figure 5.26: The current gain normalised to pre irradiation value \([(h_{FE\text{post}}/h_{FE\text{pre}})\times100] \) as a function of total dose for gamma and ion irradiated SiGe HBTs .. 94

Figure 5.27: The \(\Delta \left(\frac{1}{h_{FE}} \right) \) versus total dose for gamma and ion irradiated SiGe HBTs 95

Figure 5.28: Neutral base recombination for \(^{60}\text{Co}\) gamma irradiated SiGe HBT 96

Figure 5.29: Neutral base recombination for 50 MeV \(\text{Li}^{3+} \) ion irradiated SiGe HBT 96

Figure 5.30: Neutral base recombination for 75 MeV \(\text{B}^{5+} \) ion irradiated SiGe HBT 96

Figure 5.31: Neutral base recombination for 100 MeV \(\text{O}^{7+} \) ion irradiated SiGe HBT 96

Figure 5.32: The avalanche multiplication of carriers for \(^{60}\text{Co}\) gamma irradiated SiGe HBT ... 97

Figure 5.33: The avalanche multiplication of carriers for 50 MeV \(\text{Li}^{3+} \) ion irradiated SiGe HBT ... 97

Figure 5.34: The avalanche multiplication of carriers for 75 MeV \(\text{B}^{5+} \) ion irradiated SiGe HBT ... 97

Figure 5.35: The avalanche multiplication of carriers for 100 MeV \(\text{O}^{7+} \) ion irradiated SiGe HBT ... 97

Figure 5.36: Output characteristics for \(^{60}\text{Co}\) gamma irradiated SiGe HBT at \(I_B = 2.25 \, \mu\text{A} \) ... 98

Figure 5.37: Output characteristics for 50 MeV \(\text{Li}^{3+} \) ion irradiated SiGe HBT at \(I_B = 2.25 \, \mu\text{A} \) ... 98

Figure 5.38: Output characteristics for 75 MeV \(\text{B}^{5+} \) ion irradiated SiGe HBT at \(I_B = 2.25 \, \mu\text{A} \) ... 98
Figure 5.39: Output characteristics for 100 MeV O^{7+} ion irradiated SiGe HBT at $I_B = 2.25 \mu A$... 99

Figure 5.40: The variation in collector saturation current at $V_{CE} = 1$ V for gamma and ion irradiated SiGe HBTs ... 99

Figure 5.41: The variation in $\Delta I_C = I_{C_{Pre-rad}} - I_{C_{Post-rad}}$ at $V_{CE} = 1$ V for gamma and ion irradiated SiGe HBTs ... 99

Figure 6.1: Forward Gummel characteristics of 50 GHz SiGe HBT with A_E of $0.5 \times 1 \mu m^2$ as a function of stress time .. 105

Figure 6.2: Forward Gummel characteristics of 50 GHz SiGe HBT with A_E of $0.5 \times 2.5 \mu m^2$ as a function of stress time .. 105

Figure 6.3: The forward mode excess base current (at $V_{BE} = 0.65$ V) as a function of stress time for two different geometry devices 105

Figure 6.4: The forward mode excess base current normalised to 100 as a function of stress time for two different geometry devices 105

Figure 6.5: The variation in current gain as a function of stress time for 50 GHz SiGe HBT with A_E of $0.5 \times 1 \mu m^2$.. 106

Figure 6.6: The variation in current gain as a function of stress time for 50 GHz SiGe HBT with A_E of $0.5 \times 2.5 \mu m^2$.. 106

Figure 6.7: The peak current gain as a function of stress time for two different geometry devices ... 106

Figure 6.8: The normalised peak current gain as a function of stress time for two different geometry devices ... 106

Figure 6.9: Neutral base recombination of 50 GHz SiGe HBT with A_E of $0.5 \times 2.5 \mu m^2$ before and after applying mixed mode electrical stress ... 107

Figure 6.10: Avalanche multiplication of carriers of SiGe HBT with A_E of $0.5 \times 2.5 \mu m^2$ before and after applying mixed mode electrical stress ... 108

Figure 6.11: Output characteristics of 50 GHz SiGe HBT with A_E of $0.5 \times 1 \mu m^2$ as a function of stress time ... 108

Figure 6.12: Output characteristics of 50 GHz SiGe HBT with A_E of $0.5 \times 2.5 \mu m^2$ as a function of stress time ... 108

Figure 6.13: The collector saturation current at $V_{CE} = 1$ V as a function of stress time for two different geometry devices ... 109

Figure 6.14: Forward mode Gummel characteristics of 200 GHz SiGe HBT with A_E of $0.12 \times 2 \mu m^2$ as a function of stress time ... 110
Figure 6.15: Forward mode Gummel characteristics of 200 GHz SiGe HBT with A_E of $0.12 \times 4 \mu m^2$ as a function of stress time .. 110

Figure 6.16: The forward mode excess base current (at $V_{BE} = 0.65 V$) as a function of stress time for two different geometry devices .. 110

Figure 6.17: The forward mode excess base current normalised to 100 as a function of stress time for two different geometry devices .. 110

Figure 6.18: The variation in current gain as a function of stress time for 200 GHz SiGe HBT with A_E of $0.12 \times 2 \mu m^2$... 111

Figure 6.19: The variation of h_{FE} of 200 GHz SiGe HBT with A_E of $0.12 \times 4 \mu m^2$, subjected to mixed mode electrical stress .. 111

Figure 6.20: The variation of peak h_{FE} of 200 GHz SiGe HBT after applying mixed mode electrical stress. ... 112

Figure 6.21: The normalised peak current gain as a function of stress time for two different geometry devices .. 112

Figure 6.22: Neutral base recombination of 200 GHz SiGe HBT with emitter area A_E of $0.12 \times 4 \mu m^2$ before and after applying mixed mode stress ... 112

Figure 6.23: Avalanche multiplication of carriers of SiGe HBT with A_E of $0.12 \times 4 \mu m^2$ before and after applying mixed mode electrical stress ... 113

Figure 6.24: Output characteristics of 200 GHz SiGe HBT with A_E of $0.12 \times 2 \mu m^2$ 114

Figure 6.25: Output characteristics of 200 GHz SiGe HBT with A_E of $0.12 \times 4 \mu m^2$ 114

Figure 6.26: The collector saturation current at $V_{CE} = 1 V$ as a function of stress time for two different geometry devices .. 114

Figure 6.27: The normalised peak current gain as a function of radiation dose and stress time for 60Co gamma irradiated and stressed 50 GHz SiGe HBT. 115

Figure 6.28: The normalised peak current gain as a function of radiation dose and stress time for 50 MeV Li$^{3+}$ ion irradiated and stressed SiGe HBT. 115

Figure 6.29: The normalised peak current gain as a function of radiation dose and stress time for 75 MeV B$^{5+}$ ion irradiated and stressed 50 GHz SiGe HBT................. 116

Figure 6.30: The normalised peak current gain as a function of radiation dose and stress time for 100 MeV O$^{7+}$ ion irradiated and stressed 50 GHz SiGe HBT. 116

Figure 6.31: The normalised peak current gain as a function of radiation dose and stress time for 60Co gamma irradiated and stressed 200 GHz SiGe HBT. 117

Figure 6.32: The normalised peak current gain as a function of radiation dose and stress time for 50 MeV Li$^{3+}$ ion irradiated and stressed 200 GHz SiGe HBT............ 117
Figure 6.33: The normalised peak current gain as a function of radiation dose and stress time for 75 MeV B$^{5+}$ ion irradiated and stressed 200 GHz SiGe HBT............118

Figure 6.34: The normalised peak current gain as a function of radiation dose and stress time for 100 MeV O$^{7+}$ ion irradiated and stressed 200 GHz SiGe HBT.118

Figure 7.1: Forward mode Gummel characteristics of 60Co gamma irradiated SiGe HBT as a function of annealing temperature. ... 122

Figure 7.2: Forward mode Gummel characteristics of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT as a function of annealing temperature. .. 122

Figure 7.3: Forward mode Gummel characteristics of 75 MeV B$^{5+}$ ion irradiated SiGe HBT as a function of annealing temperature. .. 122

Figure 7.4: Forward mode Gummel characteristics of 100 MeV O$^{7+}$ ion irradiated SiGe HBT as a function of annealing temperature. .. 122

Figure 7.5: Forward mode Gummel characteristics of stressed SiGe HBT as a function of annealing temperature. ... 122

Figure 7.6: The base current as a function of total dose and annealing temperature for 60Co gamma and ion irradiated SiGe HBT (V$_{BE}$ = 0.65 V) .. 122

Figure 7.7: The recovery in current gain as a function of annealing temperature for 60Co gamma irradiated SiGe HBT. ... 123

Figure 7.8: The recovery in current gain as a function of annealing temperature for 50 MeV Li$^{3+}$ ion irradiated SiGe HBT ... 123

Figure 7.9: The recovery in current gain as a function of annealing temperature for 75 MeV B$^{5+}$ ion irradiated SiGe HBT ... 124

Figure 7.10: The recovery in current gain as a function of annealing temperature for 100 MeV O$^{7+}$ ion irradiated SiGe HBT ... 124

Figure 7.11: The recovery in current gain as a function of annealing temperature for stressed SiGe HBT ... 124

Figure 7.12: The peak current gain as a function of total dose and annealing temperature for 60Co gamma and different ion irradiated SiGe HBTs. 124

Figure 7.13: The normalised peak current gain as a function of total dose and annealing temperature for 60Co gamma and different ion irradiated SiGe HBTs 124

Figure 7.14: Neutral base recombination of un-irradiated, 60Co gamma irradiated and isochronally annealed SiGe HBT ... 126

Figure 7.15: Neutral base recombination of un-irradiated, 50 MeV Li$^{3+}$ ion irradiated and isochronally annealed SiGe HBT ... 126
Figure 7.16: Neutral base recombination of un-irradiated, 75 MeV B^{5+} ion irradiated and isochronally annealed SiGe HBT ...126

Figure 7.17: Neutral base recombination of un-irradiated, 100 MeV O^{7+} ion irradiated and isochronally annealed SiGe HBT ...126

Figure 7.18: Avalanche multiplication in un-irradiated, 60Co gamma irradiated and isochronally annealed SiGe HBT ...127

Figure 7.19: Avalanche multiplication in un-irradiated, 50 MeV Li^{3+} ion irradiated and isochronally annealed SiGe HBT ...127

Figure 7.20: Avalanche multiplication in un-irradiated, 75 MeV B^{5+} ion irradiated and isochronally annealed SiGe HBT ...127

Figure 7.21: Avalanche multiplication in un-irradiated, 100 MeV O^{7+} ion irradiated and isochronally annealed SiGe HBT ...127

Figure 7.22: Output characteristics of 60Co gamma irradiated SiGe HBT as a function of annealing temperature ...128

Figure 7.23: Output characteristics of 50 MeV Li^{3+} ion irradiated SiGe HBT as a function of annealing temperature ...128

Figure 7.24: Output characteristics of 75 MeV B^{5+} ion irradiated SiGe HBT as a function of annealing temperature ...128

Figure 7.25: Output characteristic of 100 MeV O^{7+} ion irradiated SiGe HBT as a function of annealing temperature ...128

Figure 7.26: Output characteristics of stressed SiGe HBT as a function of annealing temperature ...128

Figure 7.27: The collector saturation current as a function of total dose and annealing temperature for gamma and ion irradiated SiGe HBT ...128

Figure 7.28: Forward mode Gummel characteristics of 60Co gamma irradiated SiGe HBT as a function of annealing temperature ...129

Figure 7.29: Forward mode Gummel characteristics of 50 MeV Li^{3+} ion irradiated SiGe HBT as a function of annealing temperature ...129

Figure 7.30: Forward mode Gummel characteristics of 75 MeV B^{5+} ion irradiated SiGe HBT as a function of annealing temperature ...129

Figure 7.31: Forward mode Gummel characteristics of 100 MeV O^{7+} ion irradiated SiGe HBT as a function of annealing temperature ...129

Figure 7.32: The base current as a function of total dose and annealing temperature for 60Co gamma and ion irradiated SiGe HBT ($V_{BE} = 0.65 V$) ...130
Figure 7.33: The recovery in current gain as a function of annealing temperature for 60Co gamma irradiated SiGe HBT .. 131

Figure 7.34: The recovery in current gain as a function of annealing temperature for 50 MeV Li$^{3+}$ ion irradiated SiGe HBT .. 131

Figure 7.35: The recovery in current gain as a function of annealing temperature for 75 MeV B$^{5+}$ ion irradiated SiGe HBT .. 131

Figure 7.36: The recovery in current gain as a function of annealing temperature for 100 MeV O$^{7+}$ ion irradiated SiGe HBT .. 131

Figure 7.37: The peak current gain as a function of total dose and annealing temperature for 60Co gamma and different ion irradiated SiGe HBTs 131

Figure 7.38: The normalised peak current gain as a function of total dose and annealing temperature for 60Co gamma and different ion irradiated SiGe HBTs 131

Figure 7.39: Neutral base recombination of un-irradiated, 60Co gamma irradiated and isochronally annealed SiGe HBT .. 133

Figure 7.40: Neutral base recombination of un-irradiated, 50 MeV Li$^{3+}$ ion irradiated and isochronally annealed SiGe HBT .. 133

Figure 7.41: Neutral base recombination of un-irradiated, 75 MeV B$^{5+}$ ion irradiated and isochronally annealed SiGe HBT .. 133

Figure 7.42: Neutral base recombination of un-irradiated, 100 MeV O$^{7+}$ ion irradiated and isochronally annealed SiGe HBT .. 133

Figure 7.43: Avalanche multiplication in un-irradiated, 60Co gamma irradiated and isochronally annealed SiGe HBT .. 134

Figure 7.44: Avalanche multiplication in un-irradiated, 50 MeV Li$^{3+}$ ion irradiated and isochronally annealed SiGe HBT .. 134

Figure 7.45: Avalanche multiplication in un-irradiated, 75 MeV B$^{5+}$ ion irradiated and isochronally annealed SiGe HBT .. 134

Figure 7.46: Avalanche multiplication in un-irradiated, 100 MeV O$^{7+}$ ion irradiated and isochronally annealed SiGe HBT .. 134

Figure 7.47: Output characteristics of 60Co gamma irradiated SiGe HBT as a function of annealing temperature .. 135

Figure 7.48: Output characteristics of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT as a function of annealing temperature .. 135

Figure 7.49: Output characteristics of 75 MeV B$^{5+}$ ion irradiated SiGe HBT as a function of annealing temperature .. 135
Figure 7.50: Output characteristics of 100 MeV O$^{7+}$ ion irradiated SiGe HBT as a function of annealing temperature. ... 135

Figure 7.51: The collector saturation current as a function of total dose and annealing temperature for gamma and ion irradiated SiGe HBT ... 135

Figure 7.52: Forward mode Gummel characteristics of 60Co gamma irradiated SiGe HBT as a function of annealing time ... 137

Figure 7.53: Forward mode Gummel characteristics of 75 MeV B$^{5+}$ ion irradiated SiGe HBT as a function of annealing time ... 137

Figure 7.54: Forward mode Gummel characteristics of 100 MeV O$^{7+}$ ion irradiated SiGe HBT as a function of annealing time ... 137

Figure 7.55: The base current as a function of total dose and annealing time for 60Co gamma and ion irradiated SiGe HBTs ($V_{BE} = 0.65$ V) .. 137

Figure 7.56: The recovery in current gain as a function of annealing time for 50 MeV Li$^{3+}$ ion irradiated SiGe HBT .. 138

Figure 7.57: The recovery in current gain as a function of annealing time for 75 MeV B$^{5+}$ ion irradiated SiGe HBT .. 138

Figure 7.58: The recovery in current gain as a function of annealing time for 100 MeV O$^{7+}$ ion irradiated SiGe HBT .. 138

Figure 7.59: The peak current gain as a function of total dose and annealing time for 60Co gamma and different ion irradiated SiGe HBTs .. 138

Figure 7.60: Output characteristics of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT as a function of annealing time ... 139

Figure 7.61: Output characteristics of 75 MeV B$^{5+}$ ion irradiated SiGe HBT as a function of annealing time ... 139

Figure 7.62: Output characteristics of 100 MeV O$^{7+}$ ion irradiated SiGe HBT as a function of annealing time ... 139

Figure 7.63: The collector saturation current as a function of total dose and annealing time for gamma and ion irradiated SiGe HBT .. 139

Figure 7.64: Forward mode Gummel characteristics of 60Co gamma irradiated SiGe HBT as a function of annealing time ... 140

Figure 7.65: Forward mode Gummel characteristics of 75 MeV B$^{5+}$ ion irradiated SiGe HBT as a function of annealing time ... 140

Figure 7.66: Forward mode Gummel characteristics of 100 MeV O$^{7+}$ ion irradiated SiGe HBT as a function of annealing time ... 141
Figure 7.67: The base current as a function of total dose and annealing time for 60Co gamma and ion irradiated SiGe HBTs ($V_{BE} = 0.65$ V) ... 141

Figure 7.68: The recovery in current gain as a function of annealing time for 50 MeV Li$^{3+}$ ion irradiated SiGe HBT .. 141

Figure 7.69: The recovery in current gain as a function of annealing time for 75 MeV B$^{5+}$ ion irradiated SiGe HBT .. 141

Figure 7.70: The recovery in current gain as a function of annealing time for 100 MeV O$^{7+}$ ion irradiated SiGe HBT. ... 141

Figure 7.71: The peak current gain as a function of total dose and annealing time for 60Co gamma and different ion irradiated SiGe HBTs. ... 142

Figure 7.72: Output characteristics of 50 MeV Li$^{3+}$ ion irradiated SiGe HBT as a function of annealing time ... 142

Figure 7.73: Output characteristics of 75 MeV B$^{5+}$ ion irradiated SiGe HBT as a function of annealing time ... 142

Figure 7.74: Output characteristics of 100 MeV O$^{7+}$ ion irradiated SiGe HBT as a function of annealing time. .. 143