CONTENTS

Acknowledgement	vii
Abstract	ix
List of Figures	XV
List of Tables	XX
Nomenclature and Acronyms	xxi
1 Introduction	1
1.1Background about industrial drives & its applications	1
1.1.1 Scalar Controllers	4
1.1.2 Vector controllers	5
1.1.3 Field Acceleration Control	5
1.2 Review of simulation concepts	5
1.3 Plan of Investigation	7
2 Literature survey	10
2.1 Review of conventional type control methods	10
2.2 Review of DTC methods	13
2.3 Review of PI control methods using fuzzy	16
2.4 Review of Mamdani based FLC methods	17
2.5 Review of Takagi Sugeno based FLC methods	21
2.6 Review of Neural Network based controllers	23
2.7 Review of The ANFIS control method	26
2.8 Motivation for the research	32

2.9 Problem identification	34
3 Mathematical Modeling of Induction Motors	37
3.1 Introduction	37
3.2 Review of the SVPWM technique	39
3.2.10perational principle of PWM	40
3.2.2 Generation of space vectors in PWM control	41
3.3 The dynamic <i>d-q</i> model using park's transformation	46
3.4 Dynamic kron equation machine model	56
3.5 Dynamic Stanley equation machine model	61
4 Design & Simulation of PI controller based drive system	64
4.1 Review on PI control strategy	64
4.2 Development of the simulink model	66
4.3 Simulation results & discussions	68
4.4 Summary	72
5 Design & Simulation of Mamdani-FLC based drive system	73
5.1 Introduction	74
5.2 Review of Mamdani based FL controller design	75
5.3 Development of the simulink model	83
5.4 Simulation results and discussions	83
5.5 Summary	93
6 Design & Simulation of Takagi-Sugeno FLC based drive	
System	94
6.1 Introduction	95

6.2 Review of Takagi-Sugeno fuzzy control	96
6.3 TS based controller design	98
6.4 Development of the simulink model	100
6.5 Simulation results and discussions	102
6.6 Justification of robustness issues	110
6.7 Summary	116
7 Design & simulation of an ANFIS controller based drive	
System	118
7.1 Introduction	119
7.2 ANFIS Concept	120
7.2.1 The ANFIS model	121
7.3 ANFIS Controller design	124
7.4 Development of the simulink model	128
7.5 Simulation results and discussions	129
7.6 Justification of robustness issues in speed control	139
7.7 Summary	148
8 Comparative analysis of the designed controllers	150
9 Conclusion & Future Work	155
9.1 Conclusion	155
9.2 Future Work	156
Bibliography/References	158
Research papers published during research tenure in JNTU	172