CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>INTRODUCTION</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>1 – 38</td>
</tr>
<tr>
<td>1.1</td>
<td>Polyurethanes: Chemistry and technology</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Urethane group formation</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Basic raw materials for the production of linear polyurethanes (TPU)</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Diisocyanates</td>
<td>8</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Polyols</td>
<td>9</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Chain extenders</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Polyurethanes – Preparation and processing</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Chain structure and behaviour</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Applications of chain extended polyurethanes</td>
<td>17</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Electrical and electronics</td>
<td>19</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Building or structural material</td>
<td>20</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Packaging</td>
<td>20</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Modern materials for ceramics and electronics</td>
<td>21</td>
</tr>
<tr>
<td>1.6.5</td>
<td>Biomedical materials</td>
<td>21</td>
</tr>
<tr>
<td>1.6.6</td>
<td>Dental applications of PUs</td>
<td>23</td>
</tr>
<tr>
<td>1.6.7</td>
<td>Controlled drug delivery system</td>
<td>23</td>
</tr>
<tr>
<td>1.6.8</td>
<td>Biodegradable materials</td>
<td>24</td>
</tr>
<tr>
<td>1.7</td>
<td>Scope of the present investigation</td>
<td>24</td>
</tr>
<tr>
<td>1.8</td>
<td>Background and motivation of the investigations</td>
<td>25</td>
</tr>
<tr>
<td>1.9</td>
<td>Objectives of this study</td>
<td>25</td>
</tr>
<tr>
<td>1.10</td>
<td>Present research problem</td>
<td>25</td>
</tr>
<tr>
<td>1.11</td>
<td>References</td>
<td>27</td>
</tr>
</tbody>
</table>

2.	EXPERIMENTAL	39 – 70
PART A - Materials and equipments	39 – 53	
2.1	Materials	39
2.1.1	Polyols (Castor oil)	39
2.1.2	Diisocyanates	40
2.1.2.1	Toluene diisocyanate (TDI)	41
2.1.2.2	Hexamethylene diisocyanate (HDI)	42
2.1.3 Chain extenders (dicarboxylic acids)
- **2.1.3.1 Maleic acid**
- **2.1.3.2 Glutaric acid**
- **2.1.3.3 Citric acid**
- **2.1.3.4 Phthalic acid**
- **2.1.3.5 Tartaric acid**
- **2.1.3.6 Itaconic acid**

2.1.4 Catalyst - Dibutyl tin dilaurate (DBTL)

2.1.5 Starch

2.1.6 Zeolite (AlPO₄-5)

2.1.7 Silk fiber

2.2 Equipments
- **2.2.1 Density**
- **2.2.2 Resilience**
- **2.2.3 Universal testing machine (UTM)**
- **2.2.4 Surface hardness tester**
- **2.2.5 Fourier transform infrared (FTIR) spectroscopy**
- **2.2.6 Hazemeter**
- **2.2.7 Thermoanalytical techniques**
- **2.2.8 Wide angle X-ray scattering spectroscopy (WAXS)**
- **2.2.9 Positron annihilation lifetime spectra**
- **2.2.10 Scanning electron microscopy**

PART B - Theory and technique

2.3 Physical methods
- **2.3.1 Density**
- **2.3.2 Resilience**
- **2.3.3 Swelling behavior**
- **2.3.4 Surface hardness**

2.4 Mechanical properties

2.5 Chemical resistivity

2.6 Heat aging

2.7 Fourier Transform Infrared (FTIR) spectroscopy

2.8 Optical properties

2.9 Thermoanalytical techniques
- **2.9.1 Differential scanning calorimeter**
- **2.9.2 Thermogravimetric analyzer**
- **2.9.3 Dynamic mechanical analyzer**
3. SYNTHESE AND CHARACTERIZATION OF DICARBOXYLIC ACIDS BASED CHAIN EXTENDED POLYURETHANES

3.1 Introduction

3.2 Synthesis of dicarboxylic acid based chain extended polyurethanes
 3.2.1 Formation of pre polyurethane
 3.2.2 Formation of chain extended PU

3.3 Results and Discussion
 3.3.1 Fourier transform infrared spectroscopy
 3.3.2 Physico-mechanical properties
 3.3.2.1 Density
 3.3.2.2 Resilience
 3.3.2.3 Surface hardness
 3.3.2.4 Tensile behavior
 3.3.3 Effect of heat aging on mechanical properties
 3.3.4 Chemical resistance
 3.3.5 Optical properties
 3.3.6 Swelling behaviors of CEPUs
 3.3.7 Thermoanalytical studies
 3.3.7.1 Differential scanning calorimeter
 3.3.7.2 Dynamic mechanical analyzer
 3.3.7.3 Thermogravimetric analyzer
 3.3.8 X-ray profile analysis
 3.3.9 Morphological behavior

3.4 Conclusions

3.5 References
4. SYNTHESIS AND CHARACTERIZATION OF STARCH FILLED CEPU COMPOSITES 122 – 158
4.1 Introduction 122
4.2 Synthesis of starch filled CEPU composites 125
4.3 Results and Discussion 126
 4.3.1 Physico - mechanical properties 126
 4.3.1.1 Surface hardness 126
 4.3.1.2 Tensile behaviour 126
 4.3.1.3 Heat aging 130
 4.3.2 Thermal behavior 131
 4.3.2.1 DSC studies 131
 4.3.2.2 TGA studies 133
 4.3.3 Microcrystalline behavior by X – ray analysis 137
 4.3.4 Morphological behavior 142
 4.3.5 Swelling behaviour of CEPU/starch composites in water 144
 4.3.6 Water aging 146
 4.3.6.1 Effect of cold water aging 146
 4.3.6.2 Effect of boiling water ageing 150
4.4 Conclusions 152
4.5 References 155

5. SYNTHESIS AND CHARACTERIZATION OF ZEOLITE FILLED CEPU COMPOSITES 159 – 174
5.1 Introduction 159
5.2 Synthesis of CEPU / zeolite composites 161
 5.2.1 Preparation of zeolite 161
 5.2.2 Preparation of CEPU/ zeolite composite 162
5.3 Results and Discussion 163
 5.3.1 Mechanical properties 163
 5.3.2 Heat aging 164
 5.3.3 Thermal stability 165
 5.3.4 X-ray diffraction 167
 5.3.5 Positron annihilation lifetime measurement 168
 5.3.6 Morphological behavior 170
5.4. Conclusions 171
5.5. References 173
6. SYNTHESIS AND CHARACTERIZATION OF SILK FIBRE REINFORCED CEPU COMPOSITES 175 – 195

6.1 Introduction 175
6.2 Synthesis of silk fibre reinforced CEPU composites 178
6.3 Result and Discussion 179
 6.3.1 Physico-mechanical properties 179
 6.3.1.1 Density 179
 6.3.1.2 Surface hardness 179
 6.3.1.3 Tensile behavior 179
 6.3.2 Thermoanalytical studies 181
 6.3.2.1 Differential scanning calorimeter 181
 6.3.2.2 Dynamic mechanical analyzer (DMA) 182
 6.3.2.3 Thermogravimetric analyzer (TGA) 183
 6.3.3 Morphological behavior 185
 6.3.4 Swelling behavior of CEPU/silk fiber composites 186
 6.3.4.1 Physiological fluids preparation 186
 6.3.4.2 Measurements 187
 6.3.4.3 Effect of biological fluids on swelling behavior 187
 6.3.4.4 Effect of pH 189
 6.3.4.5 Effect of concentration of salt solutions on swelling behavior 190
 6.4 Conclusions 192
 6.5 References 194

7. SORPTION AND DIFFUSION OF ORGANIC PENETRANTS INTO DICARBOXYLIC ACIDS BASED CHAIN EXTENDED POLYURETHANES 196 – 235

7.1 Introduction 196
7.2 Molecular transport 199
 7.2.1 Sorption 199
 7.2.2 Diffusion 200
 7.2.3 Molecular models 200
 7.2.4 Free volume model 201
 7.2.5 Permeation 202
 7.2.6 Kinetics and mechanisms of the solvent sorption in polymers 203
 7.2.7 Thermodynamic and activation parameters 204
 7.2.8 Present research problem 205
7.3 Experimental

- **7.3.1** Specimen preparation 206
- **7.3.2** Sorption measurements 206

PART A - Transport characteristics of carboxylic acids based chain extended PU membranes with n-alkane penetrants 207 – 217

- **7.4** Results and discussion 208
 - **7.4.1** Sorption kinetics 208
 - **7.4.2** Sorption 212
 - **7.4.3** Diffusion and permeation coefficients 212
 - **7.4.4** Activation parameters 215
 - **7.4.5** Thermodynamic parameters 216

- **7.5** Conclusions 217

PART B - Molecular transport behaviour of substituted aromatic solvents with CEPUs 218 – 235

- **7.6** Results and Discussion 219
 - **7.6.1** Transport behavior 219
 - **7.6.2** Activation parameters 227
 - **7.6.3** Thermodynamic parameters 230

- **7.7** Conclusions 231

- **7.8** References 232

8. SUMMARY 236 – 240

- **8.1** An overview of this research investigation 236
- **8.2** Scope for future work 239