List of Figures

2.1 The location of USO on an island in the middle of Fatehsagar lake at Udaipur. .. 17

2.2 Photograph of the 25 cm aperture solar spar telescope being used to record high spatial and temporal observations of the sun. 19

2.3 Photograph of 15 cm aperture coude telescope. 21

3.1 (a) Lifetimes of prominence features and (b) Assumed location of feet with respect to supergranulation cell boundaries. 28

3.2 Double magnetic polarity at footpoints. 29

3.3 The two models prominence models (a) K-S model (b) K-R model. 30

3.4 Filament eruption on the disk on May 5-9 1979. 33

3.5 Eruptive prominence of January 28, 1990. 35

3.6 Height versus time plot for prominence eruption on January 28, 1990. 37
3.7 Filament development, activation and eruption event of April 11-24, 1990. .. 38

3.8 Plots of brightness variation along prominence legs "1" and "2" and plage "P". .. 41

3.9 Temporal variation of height of the prominence on April 24, 1990. ... 42

3.10 Eruption of an active prominence on E-limb on May 2, 1990. .. 43

3.11 Variation of height of eruptive prominence observed on May 2, 1990. .. 45

4.1 Classification of helical structures in prominences. ... 49

4.2 (a) Notations for a cylindrically symmetric flux tube. (b) The definitions of various measurable quantities of the twisted prominence system. 53

4.3 A sequence of Hα filtergrams showing the temporal and spatial evolution of the helical prominence eruption observed on March 11, 1979. ... 59

4.4 An Hα photograph of active region McMath No. 15877 showing the footpoints of the tubes 1 and 2 marked P and Q, respectively (top). KPNO magnetogram displays the magnetic field (bottom). Footpoint Q of tube 2 which was behind the limb at the time of the eruption has rotated on to the visible disk in the magnetogram taken nearly 8 hours later. ... 60

4.5 Time profiles of the volumes of the prominence tubes 1 and 2. ... 65

4.6 Time variation of radius R, the distance of tubes from the central axis. ... 66
1.7 Ascend of the crossing point X of tubes 1 and 2 with radius R.

1.8 Variation of $\tan \theta$ (where θ is the pitch angle) with radius R.

1.9 Variation of height S with time showing the variation of the twist.

1.10 The temporal evolution of the axial currents associated with the prominence tubes. The currents decrease with different rates; fastest for the lower portion of tube 2.

1.11 Prominence eruption event of January 22, 1979.

1.12 Temporal variation of volumes of the prominence tubes of January 22, 1979. While tube 1 shows a decrease, tube 2 remains constant in volume.

1.13 Time profiles of the radius of the prominence tubes measured from the central axis.

1.14 Linear dependence of $\tan \theta$ on the radius of the prominence tube 1 shown. It remains constant for tube 2.

1.15 The temporal variation of the height S implies that the twist decreased with time for both the tubes of the prominence eruption event of January 22, 1979.

1.16 The axial currents associated with prominence tubes show a decreasing behaviour.

5.1 Full disk photograph of the sun taken in $H\alpha$ on May 19, 1992 showing a loop shaped filament marked as A.
5.2 Orientation of a loop on the disk in a cartesian coordinate system. OX"Y"Z". O is the midpoint of the line joining the footpoints P₁ and P₂ of the loop OX" and OZ" are tangential to the circle of heliographic latitude and the meridian through O respectively and OY" is an extension of solar radius at O.

5.3 Orientation of loop plane. The central axis of the loop lies in the plane X"OY" of a reference frame OX"Y"Z". OX" lies in the plane X"OZ" and makes an angle α with OX" and OY" is inclined at angle β to OY".

5.4 Geometry of a loop symmetrical about an axis OQ perpendicular to the line joining the footpoints P₁ and P₂. Here, L₁ and L₂ are symmetrically placed on the central axis of the loop. E is the midpoint of the line L₁L₂.

5.5 Geometry of a loop symmetrical about an axis Q₁Q₂ which is inclined at an angle η to the line joining the footpoints P₁ and P₂. Here, again (as in Figure 5.4) L₁ and L₂ are symmetrically placed points on the central axis of the loop and E is the midpoint of the chord L₁L₂.

5.6 Projection of the loop described in Figure 5.5 on to the plane of the disk. Here, P₁P₂', Q₁Q₂' and L₁L₂' are projections of the line joining footpoints, axis of symmetry and the points L₁ and L₂ respectively. E' is the intersection point of L₁'L₂' and Q₁Q₂'. The chord L₁'E'L₂' is inclined at an angle ω₂ to OX axis and E' is such that L₁'E' = E'L₂' for every chord L₁'E'L₂'.
5.7 Outline of an Hα loop. The filled circles are midpoints of the chords parallel to P1P2 joining loop's central axis. OX and OY are the directions of true west and true north respectively. 102

5.8 A simple dipole field line passing through the loop footpoints P1, P2 and apex Q. The dipole is situated at the point U(0, −δ) and is directed parallel to the solar surface. 104

5.9 Model of Kopp and Pneuman (a) filament eruption 'tears' open field lines to form an open -sheet type configuration (b). Reconnection process allows field lines to reconnect at higher altitudes (c). 106

5.10 Closed field line of Kopp and Pneuman passing through the footpoints P1, P2 and apex Q. Here r and χ are the spherical coordinates with origin at U(0, −ra). 107

5.11 Flaring loops observed on May 13, 1981 from USO in Hα. 110

5.12 Observed Hα flare loops observed on June 4, 1991 from USO. 110

5.13 Reconstructed loop 1 of May 13 1981 with computed dipole and K-P model field lines. 116

5.14 Reconstructed loop 2 of May 13 1981 with computed dipole and K-P model field lines. 117

5.15 Reconstructed loop 3 of May 13 1981 with computed dipole and K-P model field lines. 118
5.16 Reconstructed loop 4 of May 13 1981 with dipole and K-P model field lines. .. 119

5.17 Reconstructed loop 5 of May 13 1981 with dipole and K-P model field lines. .. 120

5.18 Reconstructed loop 6 of May 13 1981 with dipole and K-P model field lines. .. 121

5.19 Comparison of reconstructed loop 1 of June 4 1991 with dipole and K-P model field lines. ... 122

5.20 Comparison of reconstructed loop 2 of June 4 1991 with dipole and K-P model field lines. ... 123

5.21 Comparison of reconstructed loop 3 of June 4 1991 with dipole and K-P model field lines. ... 124

5.22 Comparison of reconstructed loop 4 of June 4 1991 with dipole and K-P model field lines. ... 125

5.23 Comparison of reconstructed loop 5 of June 4 1991 with computed lines due to dipole and K-P model. 126

5.24 Comparison of reconstructed loop 6 of June 4 1991 with computed lines due to dipole and K-P model. 127

5.25 Comparison of reconstructed loop 7 of June 4 1991 with computed lines due to dipole and K-P model. 128
5.26 Comparison of reconstructed loop 8 of June 4 1991 with computed lines due to dipole and K-P model. .. 129

6.1 Homologous flaring arches on E-limb on March 5 and 6, 1991 and eruptive flare of March 5, 1991. .. 138

6.2 Variation of height of the flaring arch observed on March 5, 1991 with time. a and b are two different Hα knots. 139

6.3 Variation of height of the eruptive flare observed after flaring arch event on March 5, 1991 with time. Here, a and b are two different Hα knots. 140

6.4 Variation of height with time for two features a and b, in the flaring arch event observed on March 6, 1991. 140

6.5 Homologous flaring arch and eruptive flare of March 7, 1991. A is the primary footpoint shown in the form of bright plage loop and B is the secondary footpoint. 142

6.6 The Active region on March 9, 1991 .. 143

6.7 Height versus time plot for three knots of the eruptive flare followed by the flaring arch event on March 7, 1991. 144

6.8 A schematic diagram of the model of flaring arch event 147

7.1 Optical layout of the multislit spectrograph. 150

7.2 Photograph of solar spectra around Hα 153

xiv
7.3 Surge prominence observed in Hα on May 26, 1993. The spectra is shown below. .. 154

7.4 Temporal evolution of line-of-sight velocity of surge prominence observed on May 26, 1993. .. 159

7.5 Temporal variation of resultant velocity of surge prominence. 159

7.6 Variation of the projection angle of the surge. 161

7.7 Photograph of the quiescent prominence which was observed on June 7, 1993. .. 162