TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>Symbols used</td>
<td>xviii</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>High-Voltage Direct-Current Transmission</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Power System Stability</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.2.1 Control Strategies for Improvement of System Stability</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.2.2 DC Power Modulation</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Enhancement of Stability using HVDC Controls</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.3.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.3.2 Basic Control Principles</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.3.3 Enhancement of AC System Performance using HVDC Controls</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1.3.4 Control Signals</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>1.3.5 Types of Controllers</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1.3.5.1 Conventional Control Strategies</td>
<td>19</td>
</tr>
</tbody>
</table>
Chapter-2 TRANSIENT STABILITY ANALYSIS OF AC-DC SYSTEMS

2.1 Introduction 36

2.2 AC/DC Load Flow 36

2.2.1 DC System Model 38

2.2.2 AC/DC Power Flow Equations 39

2.2.3 Control Modes 40

2.2.4 The Eliminated Variable Method 43

2.2.5 Analytical Elimination 44

2.3 Transient Stability Studies 51

2.3.1 Generation Representation 53

2.3.2 Load Representation 54
2.3.3 HVDC System Representation 55

2.3.4 Runge-Kutta Method 57

2.3.5 Algorithm for AC/DC Transient Stability 58

Chapter-3 CONVENTIONAL MODULATION CONTROLLERS-

SINGLE MACHINE, 2-BUS SYSTEM 63

3.1 Introduction 64

3.2 Test System 64

3.3 Case studies 65

3.3.1 Mechanical Power Variation 66

3.3.2 Line Outage 74

3.3.3 Summary 82

Chapter-4 CONVENTIONAL MODULATION CONTROLLERS –

MULTI MACHINE SYSTEM 84

4.1 Introduction 85

4.2 Test System 85

4.2.1 Case Studies 87

4.2.2 Uncontrolled Case 87

4.2.3 Controlled Case 89

4.3 Summary 99
Chapter-5 FUZZY LOGIC BASED VARIABLE GAIN PID

CONTROLLERS 101

5.1 Introduction 102

5.2 Fuzzy Control 102

5.2.1 Fuzzy Set Theory 103

5.2.2 The AND operator (The intersection of two fuzzy sets) 104

5.2.3 The OR operator (The union of two fuzzy sets) 104

5.2.4 The NOT operator (The complement of a fuzzy set) 104

5.2.5 Fuzzy Relation 104

5.3 Fuzzy Controller Design Principle 105

5.4 Fuzzy Logic based gains of Modulation Controllers 106

5.4.1 Introduction 106

5.4.2 Control Rules and Fuzzy Labels 107

5.4.3 Variable Gain PID controller 109

5.5 Summary 115
Chapter-6 FUZZY LOGIC BASED MODULATION CONTROLLERS

6.1 Introduction 118

6.2 Design Methodology of Fuzzy Logic Controller 118

6.2.1 Introduction 118

6.2.2 Establishment of the fuzzy relation matrix 119

6.2.3 Specification of the membership functions for controller inputs 122

6.2.4 Determination of the membership function of controller output 124

6.2.5 Determination of the Resultant Output 128

6.3 Summary 130

Chapter-7 CONCLUSIONS 131

Appendix I System Data for Single Machine Infinite Bus System 137

I.1 Test System: IEEE 3-Bus System 138

I.2 System Data 138

I.3 Admittance Matrix 139
I.4 Load Flow Results 139

Appendix II System Data for Multi Machine System 141

II.1 Test System: WSCC 3-Machine, 9-Bus System 142

II.2 System Data 142

II.3 Admittance Matrix 145

II.4 Load Flow Results 146

List of Publications from the Thesis 150

References 152