List of figures

Contents Pg.No.

Chapter 1: Introduction 1-45

Figure 1.1. Pathophysiology of invasive candidiasis
Figure 1.2. Differential expression of pattern recognition receptors on surface
 of innate immune cells which are involved in recognition of
 Candida cells
Figure 1.3 A co-operative effort of innate and adaptive immune system
 provides protection against *Candida* infections.
Figure 1.4 A differential interference contrast (DIC) micrograph (63X
 magnification) depicting budding in *C. glabrata* cells.
Figure 1.5 Micrograph displaying PMA-activated THP-1 macrophages
 infected with *C. albicans* (A) and *C. glabrata* (B).
Figure 1.6 A pictorial representation of interaction of *C. glabrata* cells with
 macrophages.

Chapter 3: Establishment of an in vitro cell culture model system and
 identification of *C. glabrata* mutants with altered survival
 profiles in THP-1 macrophages

Figure 3.1 Schematic diagram illustrating establishment of an *in vitro* cell
 culture model system.
Figure 3.2 *C. glabrata* cells survive and replicate in differentiated THP-1
 macrophages.
Figure 3.3 *Cgyp1-11Δ* cells replicate in RPMI medium and are phagocytosed
 by THP-1 macrophages at a rate similar to that of wild-type *C.
 glabrata* cells.
Figure 3.4 *C. glabrata* infection elicits reactive oxygen species (ROS)
 generation in THP-1 macrophages.
Figure 3.5 Live *C. glabrata* cells prevents phagolysosomal acidification.
Figure 3.6 Bafilomycin-A treatment inhibits phagolysosomal acidification in
 THP-1 macrophages infected with heat-killed GFP-expressing *C.
C. glabrata cells.

Figure 3.7 C. glabrata elicits interleukin-4 (IL-4) production in PMA-activated THP-1 macrophages.

Figure 3.8 Schematic representation of mutant pool screening in macrophages.

Figure 3.9 PCR-amplified and radiolabeled probes hybridize specifically to plasmids carrying unique signature sequences.

Figure 3.10 Map of Tn7 cassette used to generate C. glabrata mutant library.

Figure 3.11 Schematic diagram illustrating genomic mapping of Tn7 insertion in identified mutants.

Figure 3.12 Pie-chart illustrating functional classification of identified genes in STM screen.

Figure 3.13 Phenotypic characterization of C. glabrata mutants displaying decreased survival and/or replication in THP-1 macrophages.

Chapter 4: Role of chromatin remodeling in virulence of C. glabrata 114-158

Figure 4.1 Mutants disrupted for chromatin organization and DNA damage repair display reduced survival in macrophages.

Figure 4.2 Mutants disrupted for chromatin organization and DNA damage repair display varied levels of sensitivity towards genotoxic and oxidative stresses.

Figure 4.3 Chromatin architecture is altered in macrophage-internalized C. glabrata cells.

Figure 4.4 Macrophage-internalized C. glabrata cells display altered histone modifications.

Figure 4.5 C. glabrata cells display transcriptional induction of histone coding ORFs upon macrophage internalization.

Figure 4.6 Schematic diagram of one step gene disruption methodology.

Figure 4.7 Confirmation of CgRTT107 deletion at genomic locus.

Figure 4.8 Schematic diagram of knockout generation by fusion PCR method.

Figure 4.9 Confirmation of CgRTT109 and CgSGS1 disruption in Cgrrt109Δ and Cgsgs1Δ deletion strains.

Figure 4.10 Single-strain infections of PMA-activated THP-1 macrophages.
Figure 4.11 Growth profiles of mutants deleted for genes implicated in chromatin remodeling and DNA damage repair genes.

Figure 4.12 Chromatin remodeling and DNA repair defective mutants display attenuated growth in the presence of genotoxic and oxidative stress causing agents.

Figure 4.13 Growth curve analysis of wild-type, Cgrtt107Δ and Cgrtt109Δ in YPD medium and YPD medium containing 20 mM H2O2 at 30°C.

Figure 4.14 Ectopic expression of CgRTT107 and CgRTT109 complements the sensitivity of Cgrtt107Δ and Cgrtt109Δ mutants to DNA damage-causing agents.

Figure 4.15 Western analysis on whole cell extracts of wild-type, Cgrtt109Δ and Cgrtt109Δ/pRK941 strains.

Figure 4.16 Immunoblot analysis on whole-cell extracts of Cgrsc3-aΔ and Cgrtt109Δ mutants.

Figure 4.17 Differential gene expression pattern of wild-type, Cgrsc3-aΔ and Cgrtt109Δ cells.

Figure 4.18 Heat maps depicting differential gene expression profiles.

Figure 4.19 Cgrsc3-aΔ and Cgrtt109Δ cells display striking overlap in differentially expressed genes compared to wild-type cells.

Figure 4.20 GO Slim Mapper analysis of differentially expressed up-regulated genes in wt, Cgrsc3-aD and Cgrtt109D cells upon macrophage internalization.

Figure 4.21 GO Slim Mapper analysis of differentially expressed down-regulated genes in wild-type, Cgrsc3-aD and Cgrtt109D cells upon macrophage internalization.

Figure 4.22 Validation of microarray by qRT-PCR analysis.

Figure 4.23 Chromatin remodeling and DNA repair defective mutants display attenuated growth in the presence of alternate carbon sources.

Figure 4.24 Growth curve analysis for wild-type and indicated mutants in YNB medium supplemented with dextrose (A), lactic acid (B) and sodium acetate (C) at 30°C.

Figure 4.25 Sodium acetate grown C. glabrata cells display diminished
acetylation of histone H3 at lysine 56 residue.

Figure 4.26 Macrophage-internalized *C. glabrata* cells display elevated lysine deacetylase activity.

Figure 4.27 Confirmation of *CgACS1* deletion from genomic locus.

Figure 4.28 *Cgacs1Δ* cells display wild-type like growth in alternate carbon sources and THP-1 macrophages.

Figure 4.29 Genes involved in chromatin organization and DNA repair are required for virulence of *C. glabrata*.

Figure 4.30 A pictorial illustration of the metabolic and epigenetic adaptation of *C. glabrata* cells to the internal milieu of THP-1 macrophages (N = nucleus).

Chapter 5: Role of PI-3 kinase in pathogenesis of *C. glabrata* 159-183

Figure 5.1. *C. glabrata* PI-3 kinase mutant display impaired modulation of phagolysosomal acidification and reduced survival in macrophages.

Figure 5.2. Confirmation of *CgVPS15, CgVPS34* and *CgGPA1* disruption in *Cgvps15Δ, Cgvps34Δ* and *Cggpa1Δ* deletion strains.

Figure 5.3. *C. glabrata* PI-3 kinase deletion mutants are impaired in modulating phagolysosomal acidification.

Figure 5.4. *C. glabrata* PI-3 kinase deletion mutants are unable to survive in macrophages.

Figure 5.5. Growth analysis of *C. glabrata* strains in RPMI-1640 and YPD media.

Figure 5.6. Intracellular killing of *Cgvps15Δ* and *Cgvps34Δ* mutants in macrophages is independent of reactive oxygen species (ROS) generation.

Figure 5.7. *Cgvps34Δ* mutant elicits higher IL-4 and IL-6 production by THP-1 macrophages.

Figure 5.8. *C. glabrata* PI-3 kinase mutants displayed elevated sensitivity towards oxidative, cell wall and thermal stresses.

Figure 5.9. Deletion of *CgVPS34* abolishes PI-3 kinase activity in *C. glabrata*.

Figure 5.10. *Cgvps15Δ* and *Cgvps34Δ* mutants exhibit enlarged vacuolar
morphology and attenuated growth on nonfermentable carbon sources.

Figure 5.11. PI-3 kinase defective *C. glabrata* mutants display higher levels of vacuolar hydrolase CgCpy.

Figure 5.12. PI-3 kinase defective *C. glabrata* mutants display altered secretion of carboxypeptidase Y and Epa1.

Figure 5.13. *Cgyps15Δ* and *Cgyps34Δ* mutants are hyperadherent to Lec-2 epithelial cells.

Figure 5.14. *Cgyps15Δ* and *Cgyps34Δ* mutants exhibit attenuated virulence in murine model of systemic candidiasis.