Table of Contents

Abbreviations

Synopsis

Chapter 1: Introduction

1. **Section 1.1 Candida and candidiasis: An introduction**
 - 1.1.1 Fungi
 - 1.1.2 Human fungal pathogens
 - 1.1.3 *Candida* and candidiasis
 - 1.1.3.1 *Candida* species: general features
 - 1.1.3.2 Epidemiology of candidiasis
 - 1.1.3.2.1 Types and sources of *Candida* infections
 - 1.1.3.2.2 *Candida* species: prevalence, risk factors and diseases
 - 1.1.3.2.3 Candidiasis: impact of underlying diseases and age
 - 1.1.3.2.4 Pathophysiology of invasive candidiasis
 - 1.1.3 Diagnosis

Section 1.2 Virulence factors of *Candida* species

- 1.2.1 Adherence
- 1.2.2 Hydrolytic activity
- 1.2.3 Morphological switching
- 1.2.4 Phenotypic switching and mating
- 1.2.5 Pigmentation
- 1.2.6 Signal transduction cascades

Section 1.3 Immunity against candidiasis

- 1.3.1 Role of innate immunity in resistance to candidiasis
 - 1.3.1.1 Recognition of *Candida* species
 - 1.3.1.1.1 Toll like receptors
 - 1.3.1.1.2 C-type lectin receptors
 - 1.3.1.1.3. Other receptors
 - 1.3.1.2 Role of innate immune cells in immunity against candidiasis
 - 1.3.1.2.1 Macrophages
 - 1.3.1.2.2 Dendritic cells

<table>
<thead>
<tr>
<th>Contents</th>
<th>Pg.No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td></td>
</tr>
<tr>
<td>Synopsis</td>
<td></td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1-45</td>
</tr>
<tr>
<td>Section 1.1 Candida and candidiasis: An introduction</td>
<td></td>
</tr>
<tr>
<td>1.1.1 Fungi</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Human fungal pathogens</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Candida and candidiasian</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3.1 Candida species: general features</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3.2 Epidemiology of candidiasian</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3.2.1 Types and sources of Candida infections</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3.2.2 Candida species: prevalence, risk factors and diseases</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3.2.3 Candidiasis: impact of underlying diseases and age</td>
<td>7</td>
</tr>
<tr>
<td>1.1.3.2.4 Pathophysiology of invasive candidiasis</td>
<td>8</td>
</tr>
<tr>
<td>1.1.3.3 Diagnosis</td>
<td>10</td>
</tr>
<tr>
<td>Section 1.2 Virulence factors of Candida species</td>
<td>10</td>
</tr>
<tr>
<td>1.2.1 Adherence</td>
<td>11</td>
</tr>
<tr>
<td>1.2.2 Hydrolytic activity</td>
<td>12</td>
</tr>
<tr>
<td>1.2.3 Morphological switching</td>
<td>13</td>
</tr>
<tr>
<td>1.2.4 Phenotypic switching and mating</td>
<td>13</td>
</tr>
<tr>
<td>1.2.5 Pigmentation</td>
<td>14</td>
</tr>
<tr>
<td>1.2.6 Signal transduction cascades</td>
<td>14</td>
</tr>
<tr>
<td>Section 1.3 Immunity against candidiasis</td>
<td>15</td>
</tr>
<tr>
<td>1.3.1 Role of innate immunity in resistance to candidiasis</td>
<td>15</td>
</tr>
<tr>
<td>1.3.1.1 Recognition of Candida species</td>
<td>16</td>
</tr>
<tr>
<td>1.3.1.1.1 Toll like receptors</td>
<td>16</td>
</tr>
<tr>
<td>1.3.1.1.2 C-type lectin receptors</td>
<td>17</td>
</tr>
<tr>
<td>1.3.1.1.3. Other receptors</td>
<td>18</td>
</tr>
<tr>
<td>1.3.1.2 Role of innate immune cells in immunity against candidiasis</td>
<td>19</td>
</tr>
<tr>
<td>1.3.1.2.1 Macrophages</td>
<td>19</td>
</tr>
<tr>
<td>1.3.1.2.2 Dendritic cells</td>
<td>20</td>
</tr>
</tbody>
</table>
1.3.1.2.3 Neutrophils
1.3.1.2.4 Natural killer (NK) cells
1.3.1.3 Role of soluble factors
1.3.1.3.1 Antimicrobial peptides
1.3.1.3.2 Complement system
1.3.2. Role of acquired immunity in resistance to candidiasis
1.3.2.1. Humoral immunity
1.3.2.2 Cell-mediated immunity

Section 1.4 Treatment of fungal infections
1.4.1 Antifungal drugs
1.4.1.1 Antifungal drugs targeting ergosterol and its biosynthesis
1.4.1.1.1 Allyl amines and thiocarbamates
1.4.1.1.2. Azoles
1.4.1.1.3 Morpholines
1.4.1.1.4. Polyenes
1.4.1.2 Antifungal drugs targeting fungal cell wall
1.4.1.3 Antifungal drugs inhibiting nucleic acid synthesis
1.4.2 Immunotherapy for fungal infections
1.4.2.1 Passive immunotherapy
1.4.2.1.1 Colony stimulating factors
1.4.2.1.2 Cytokines
1.4.2.1.3. Antibodies
1.4.2.2 Active immunotherapy
1.4.2.2.1 Antifungal vaccination to induce antibody-mediated immunity
1.4.2.2.2 Antifungal vaccination to induce cell-mediated immunity

Section 1.5 C. glabrata: General features and interaction with host
1.5.1 Host immune responses against C. glabrata infection
1.5.2 Intracellular behavior of C. glabrata
1.5.2.1 Interaction of C. glabrata with epithelial cells
1.5.2.2 Interaction of C. glabrata with endothelial cells
1.5.2.3 Interaction of C. glabrata with neutrophils
1.5.2.4 Interaction of C. glabrata with dendritic cells
1.5.2.5 Interaction of *C. glabrata* with polymorphonuclear leukocytes and monocytes

1.5.2.6 Interaction of *C. glabrata* with macrophages

1.5.2.6.1 *C. glabrata* modulates macrophage antimicrobial response for intracellular proliferation

1.5.2.6.2 Metabolic adaptation of *C. glabrata* cells to host environment

Objectives of the present study

Chapter 2: Materials and Methods

2.1 Materials

2.1.1 Strains and plasmids

2.1.2 Antibodies

2.1.3 Oligonucleotides

2.1.4 Chemicals, kits and culture medium components

2.1.5 Media

2.1.5.1 Yeast media

2.1.5.2 Bacterial media

2.1.6 Buffers and solutions

2.1.6.1 Common buffers

2.1.6.2 Buffers for extraction and analysis of genomic DNA and RNA

2.1.6.3 Buffers for protein extraction and analysis by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis)

2.1.6.4 Reagents for PI3-kinase assay

2.2 Methods

2.2.1 Animal cell culture methods

2.2.1.1 Cell lines and culture conditions

2.2.1.2 Isolation of primary (peritoneal) macrophages from BALB/c mice

2.2.1.3 Cryopreservation and revival of cell lines

2.2.1.4 Treatment of THP-1 monocytic cells with phorbol myrsityl acetate

2.2.1.5 Single infection assay

2.2.1.6 Cytokines measurement

2.2.1.7 Fixing of PMA-treated THP-1 macrophages

2.2.1.8 Lysotracker staining
2.2.1.9 Harvesting of macrophage-internalized \textit{C. glabrata} cells for RNA and protein extraction

2.2.2. \textbf{Microbiological methods}

2.2.2.1 Strains and culture conditions

2.2.2.2 Growth analysis and determination of generation time

2.2.2.3 Serial dilution spotting assay

2.2.2.4 Phenotypic profiling

2.2.2.5 Yeast transformation

2.2.2.6 Screening of \textit{C. glabrata} Tn7 insertion mutant library

2.2.2.7 Fluorescein isothiocyanate (FITC) staining of \textit{C. glabrata} cells

2.2.2.8 Opsonization of \textit{C. glabrata} cells

2.2.2.9 Harvesting of and treatment to logarithmic phase \textit{C. glabrata} cells

2.2.2.10 Staining of \textit{C. glabrata} vacuoles with FM4-64

2.2.2.11 Yeast colony PCR

2.2.2.12 Preparation of \textit{E. coli} DH5α ultracompetent cells

2.2.2.13 Bacterial transformation

2.2.2.14 Preparation of \textit{E. coli} BW23473 electrocompetent cells

2.2.2.15 Transformation of \textit{E. coli} BW23473 cells by electroporation

2.2.2.16 Mutant rescue

2.2.3. \textbf{Molecular biology methods}

2.2.3.1 Plasmid DNA purification

2.2.3.2 Membrane preparation

2.2.3.3 Southern hybridization

2.2.3.4 Post-hybridization washes

2.2.3.5 Data analysis

2.2.3.6 Stripping of probes from hybridized membranes

2.2.3.7 Genomic DNA isolation by quick genomic DNA extraction method

2.2.3.8 Genomic DNA isolation by glass bead lysis method

2.2.3.9 Micrococal nuclease digestion assay

2.2.3.10 RNA extraction

2.2.3.11 Synthesis of complementary DNA (cDNA)

2.2.3.12 Quantitative real-time PCR

2.2.3.13 Microarray Analysis
2.2.3.14 Gel extraction of DNA 80
2.2.3.15 Purification of restriction enzyme-digested and PCR amplified products 80
2.2.3.16 Ligation 81
2.2.3.17 Cloning of C. glabrata ORFs 81

2.2.4 Other methods 81
2.2.4.1 Ethics statement 81
2.2.4.2 Mouse infection assay 81
2.2.4.3 Protein extraction and immunoblotting 82
2.2.4.4 Lysine deacetylase (KDAC) activity measurement 83
2.2.4.5 Adherence assay 83
2.2.4.6 Colony blot assay 84
2.2.4.7 Phosphatidyl inositol-3 kinase (PI-3 kinase assay) 84
2.2.4.7.1 Preparation of cell lysate 84
2.2.4.7.2 Preparation and sonication of phosphatidylinositol-sodium salt solution 85
2.2.4.7.3 PI-3 kinase reaction set up and phospholipid extraction 85
2.2.4.7.4 Separation of phospholipids by thin layer chromatography (TLC) 85

Chapter 3: Establishment of an in vitro cell culture model system and identification of C. glabrata mutants with altered survival profiles in THP-1 macrophages 87-113

3.1 Introduction 88
3.2 Results 88
3.2.1 C. glabrata cells survive and replicate in THP-1 macrophages 88
3.2.2 C. glabrata infection elicits reactive oxygen species (ROS) generation in THP-1 macrophages 93
3.2.3 Live C. glabrata cells modulate phagolysosomal maturation 94
3.2.4 C. glabrata elicits interleukin-4 (IL-4) production in PMA-activated THP-1 macrophages 96
3.2.5 Screening of the C. glabrata mutant library by signature-tagged mutagenesis (STM) approach identified mutants with altered survival profiles in THP-1 macrophages 98
3.2.6 Genomic mapping of Tn7 insertion and gene identification

3.2.7 Phenotypic profiling of *C. glabrata* mutants displaying attenuated growth in THP-1 macrophages

3.3 Discussion

Chapter 4: Role of chromatin remodeling in virulence of *C. glabrata*

4.1 Introduction

4.2 Results

4.2.1 Mutants defective in chromatin organization and DNA repair display reduced survival in THP-1 macrophages

4.2.2 Chromatin organization and DNA repair defective mutants exhibit varied levels of sensitivity towards genotoxic and oxidative stresses

4.2.3 Chromatin architecture is altered in macrophage-internalized *C. glabrata* cells

4.2.4 Macrophage-internalized *C. glabrata* cells display altered histone modifications

4.2.5 Macrophage-ingested *C. glabrata* cells exhibit induced expression of histone coding ORFs

4.2.6 Generation of Cgrtt107Δ, Cgrsc3-aΔ, Cgrsc3-bΔ, Cgrsc3-aΔbΔ, Cgrtt109Δ and Cgsgs1Δ mutant strains

4.2.7 Mutants deleted for genes implicated in chromatin remodeling and DNA repair display reduced survival in THP-1 macrophages

4.2.8 Genes implicated in chromatin remodeling and DNA damage repair are required to survive genotoxic and oxidative stresses.

4.2.9 Cloning of CgRTT107 and CgRTT109 genes and complementation analysis

4.2.10 Macrophage-internalized Cgrsc3-aΔ and Cgrtt109Δ cells exhibit altered chromatin architecture and epigenetic signature

4.2.11 Genome-wide transcriptional profiling analysis on chromatin organization defective mutants

4.2.11.1 Comparison of gene expression profiles of 2 and 10 h macrophage-internalized wild-type cells
4.2.11.2 Comparison of gene expression profiles of RPMI-grown wild-type, Cgrsc3-aΔ and Cgrrt109Δ cells

4.2.11.3 Comparison of gene expression profiles of RPMI-grown and macrophage-internalized wild-type, Cgrsc3-aΔ and Cgrrt109Δ cells

4.2.11.4 Comparison of gene expression profiles of macrophage-internalized Cgrsc3-aΔ and Cgrrt109Δ cells with macrophage-internalized wild-type cells

4.2.12 Validation of genome-wide expression profiles by quantitative RT-PCR analysis

4.2.13 Chromatin remodeling and DNA repair defective mutants are impaired in the utilization of alternate carbon sources

4.2.14 Macrophage-internalized C. glabrata cells display elevated lysine deacetylase activity

4.2.15 Cgacs1Δ cells display wild-type like growth in medium containing alternate carbon sources and THP-1 macrophages

4.2.16 Genes implicated in chromatin organization and DNA repair are required for virulence of C. glabrata

4.3 Discussion

Chapter 5: Role of PI-3 kinase in pathogenesis of C. glabrata

5.1 Introduction

5.2 Results

5.2.1 PI-3 kinase mutant, Cgyps15, is impaired in preventing phagolysosomal acidification and survival in macrophages

5.2.2 Generation of Cgyps15Δ, Cgyps34Δ and Cggpa1Δ strains

5.2.3 Killing of Cgyps15Δ and Cgyps34Δ mutants in macrophages is independent of reactive oxygen species (ROS) generation

5.2.4 Cgyps15Δ and Cgyps34Δ mutants display increased sensitivity towards oxidative, cell wall and thermal stresses

5.2.5 Cgyps15Δ and Cgyps34Δ mutants exhibit enlarged vacuolar morphology and attenuated growth on non-fermentable carbon sources

5.2.6 Cgyps15Δ and Cgyps34Δ mutants display enhanced secretion of carboxypeptidase Y and Epa1
5.2.7 *Cgyp15Δ* and *Cgyp34Δ* mutants are hyperadherent to Lec-2 epithelial cells

5.2.8 PI-3 kinase is required for virulence of *C. glabrata*

5.3 Discussion

Chapter 6: Conclusions and future perspectives

References

Publications