INDEX

Synopsis

Chapter -1

A comparative analysis of tumorigenesis pathways driving early and late onset colorectal cancer in India

1.0.1. Key words 01
1.0.2. Abbreviations 01

1.1. Introduction 01
1.1.2. Colorectal cancer 01
1.1.3. Colorectal cancer in India 04
1.1.4. Human Large intestine 07
1.1.5. Biology of CRC 08
1.1.6. The progress of normal crypt to adenoma and to carcinoma 10
1.1.7. Genetics of colorectal adenocarcinoma 10
1.1.7.1. Familial cancer 10
1.1.7.1.1. FAP 11
1.1.7.2.1. Major characteristics of FAP 11
1.1.7.1.2. HNPCC 11
1.1.7.1.2.1. Major characteristics of LS 11
1.1.7.2. Sporadic CRC 12

1.2. Review of literature 13
1.2.1. The burden of early-onset CRC; higher occurrence in developing countries 14
1.2.2. Distinction in occurrence of Rectal and colon cancer 15

1.3. Lacunae 16
1.4. References

Chapter - 2

Epidemiological analysis of clinico-pathological features: A positive family history of cancer may not explain the high incidence of early-onset CRC in India

2.0.1. Key words 20
2.0.2. Abbreviations 20

2.1 Introduction 20
2.2 Review of Literature 22
2.3 Materials and methods 25
Chapter 3

Canonical Wnt and MSI pathways may not govern tumorigenesis in a significant proportion of early-onset sporadic colorectal cancer patients in India

3.0.1. Key words 47
3.0.2. Abbreviations 47

3.1. Introduction 47
 3.1.1. CIN pathway 48
 3.1.2. MSI pathway 53
 3.1.3. Additional events in CRC progression and the CRC progression model 55

3.2. Review of literature 56
3.3. Materials and methods 59
 3.3.1. Patient samples 59
3.3.2. Protocols

3.3.2.1. Nucleic acid isolation

3.3.2.1.1. Frozen tissue

3.3.2.1.2. Archived samples

3.3.2.2. Immunohistochemistry (IHC)

3.3.2.3. Screening for Microsatellite Instability

3.3.2.4. Mutation screening

3.3.2.4.1. Mutation analyses of *Adenomatous Polyposis Coli (APC)* - mutation cluster region (MCR)

3.3.2.4.1.1. Identification of heterozygous frame-shift mutations

3.3.2.4.2. Mutation analysis of *KRAS2*

3.3.3. Analysis of Wnt target gene expression

3.4. Results

3.4.1. Wnt-/MSI- tumors constitute a major CRC subtype in India especially in EOCRC

3.4.1.1. Screening for CIN in Indian CRC patients

3.4.1.1.1. Screening for aberrant Wnt signaling in Indian CRC patients

3.4.1.1.2. Wnt transcriptional target profiling confirms IHC results.

3.4.1.1.3 APC mutation analysis further confirms IHC results.

3.4.1.2. Screening for Microsatellite instability

3.4.1.3. Combined analysis of contribution of the two pathways in CRC

3.4.2. Indian CRC tumors do not appear to follow the

3.4.2.1. Screening for P53 status

3.4.2.2. Colorectal tumors occurring in young patients exhibit significantly lower frequency of *KRAS2* mutations as against older patients

3.5. Discussion

3.6. Permissions for reproduction of images

3.7. References

Chapter-4

Identification of alternate tumorigenesis pathway(s) in EOCRC

4.0.1. Key words

4.0.2. Abbreviations

4.1. Introduction
4.1. Genome wide Copy number profiling to identify Chromosomal Instability status (CIN) and recurrent Copy Number Alterations (CNAs) in Wnt-/MSI- EOCRC

4.1.1. Introduction to CIN
- **4.1.1.1.** Microarray based Comparative Genomic Hybridization (aCGH) for profiling genome-wide copy number

4.1.2. Review of literature
- **4.1.2.1.** CIN in CRC
- **4.1.2.1.1.** Detecting CNAs using aCGH
- **4.1.2.2.** DNA copy number profiling of CRC using aCGH

4.1.3. Materials and methods
- **4.1.3.1.** Patient samples
- **4.1.3.2.** DNA isolation from tumor tissue
- **4.1.3.3.** DNA isolation from reference (control) sample
- **4.1.3.4.** aCGH based detection of CNAs
 - **4.1.3.4.1.** Reagents and equipments for aCGH
 - **4.1.3.4.1.1.** Reagents
 - **4.1.3.4.2.** Protocol for aCGH
 - **4.1.3.4.2.1.** Labeling and hybridization
 - **4.1.3.4.2.2.** Scanning
 - **4.1.3.4.2.3.** Data normalization and visualization
- **4.1.3.5.** Statistical method of calling gains and losses
- **4.1.3.6.** Quantitative PCR (QPCR) based validation of CNAs detected in aCGH

4.1.4. Results
- **4.1.4.1.** Wnt-/MSI- tumors harbor CIN even in the absence of canonical Wnt activation
 - **4.1.4.1.1.** Identification of recurrent/ high-level CNA for identifying tumor driver genes
 - **4.1.4.1.2.** Recurrent CNAs
 - **4.1.4.1.3.** High-level copy number gains

4.2. Gene expression profiling
- **4.2.1** Introduction
- **4.2.2.** Review of literature

4.2.3. Materials and methods
- **4.2.3.1.** Patient samples
- **4.2.3.2.** RNA isolation
- **4.2.3.3.** Gene expression array
 - **4.2.3.3.1.** Protocol for transcriptome profiling
 - **4.2.3.3.2.** Scanning and data acquisition of gene expression arrays
- **4.2.3.4.** Statistical analysis
 - **4.2.3.4.1.** Gene Set Enrichment Analysis (GSEA)
 - **4.2.3.4.2.** Single Sample GSEA (SSGSEA)
 - **4.2.3.4.3.** Significance Analysis of Microarrays (SAM)
 - **4.2.3.4.4.** Clustering
4.2.3.4.5. Database for Annotation, Visualization and Integrated Discovery (DAVID) 146

4.2.3.5. Reverse transcription-Quantitative PCR (RT-Q-PCR) analysis of target gene expression 147
4.2.3.6. Tissue microarray (TMA) 149
4.2.3.7. IHC for NFATC2 149

4.2.4. Results 150
4.2.4.1. Transcriptome analysis 150
4.2.4.2. Analysis of differential pathways among Wnt+/MSI- and Wnt-/MSI- EOCRC using GSEA identifies role of non-canonical Wnt signaling. 151
4.2.4.3. Statistical data-mining approach confirms the role of non-canonical Wnt signaling in Wnt-/MSI- EOCRC 155
4.2.4.4. Mapping the significant genes in Wnt-/MSI- EOCRC to pathways identify the presence of Wnt/Ca\(^{2+}\) pathway 159

4.3. Discussion 165
4.3.1. Wnt independent mechanism of CIN 165
4.3.2. Significant CNAs identified with potential resident driver genes 166
4.3.3. Transcriptome profiling identifies non-canonical Wnt pathway among Wnt-/MSI-Samples 168
4.3.4. Possible role of Wnt/Ca\(^{2+}\) signaling in Wnt-/MSI- EOCRC 169
 4.3.4.1. The Wnt/Ca\(^{2+}\) signaling pathway 170

4.4. References 173

Chapter 5

Altered tumor biology in early onset patients; need to address the role of ethnicity or altered etiological factors

5.0.1. Key words 179
5.0.2. Abbreviations 179
5.1. Summary 179
5.2. Role of ethnicity in cancer incidence; high incidence of EOCRC 180
5.3. Molecular origins of CRC in India, do we need additional models? 183
5.4. Understanding the biology of EOCRC in the absence of canonical CRC pathways 184
5.5. Conclusion 186