ABBREVIATIONS

Ac Acetyl
Ac2O Acetic anhydride
AcOH Acetic acid
Aq Aqueous
Ar Aryl
Bn Benzyl
br Broad
Br Bromine
BOC Butyloxy carbonyl
t-Bu tert-Butyl
t-BuOH tert-Butyl alcohol
t-BuOK Potassium tert-butoxide
Bz Benzoyl
Cat Catalytic
Cbz Benzyloxy carbonyl
Conc Concentrated
d doublet
DCC N,N-Dicyclohexylcarbodiimide
dd doubledoublet
DCM Dichloromethane
DIC Diisopropylcarbodiimide
DIEA Diisopropylethylamine
DMAP 4-(Dimethylamino)pyridine
DMF Dimethylformamide
DMSO Dimethyl sulphoxide
DPPH 2,2-Diphenyl-1-picrylhydrazyl
Et Ethyl
EtOAc Ethyl acetate
Fmoc 9-Fluorenylemethoxycarbonyl
EtOH Ethanol
H2O2 Hydrogen peroxide
HOBT 4-Hydroxybenzotriazole
HBTU 2-(1H-9-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
HPLC High performance liquid chromatography
Hz Hertz
IR Infrared
i-PrNEt Di-isopropylethylamine
m meta
Me Methyl
MeOH Methanol
MeCN Acetonitrile
MOM Methoxymethyl
MsCl Methane sulphonyl chloride
MS Mass
Mp Melting point
Myr Myristic acid
NaH Sodium hydride
NaOCH3 Sodium methoxide
NMR Nuclear magnetic resonance
o ortho
p para
Pd/C Palladium on carbon
PPTS Pyridinium p-toluenesulphonate
p-TSA p-Toluene sulphonic acid
Ph Phenyl
Pme 2,2,5,7,8-Pentamethylchroman-6-sulfonyl
q quartet
rt Room temperature
s singlet
t triplet
TBDMS Tertiary butyl dimethyl silyl
tBDPS Tertiary butyl diphenyl silyl
TBAF Tetra butyl ammonium fluoride
TCA Trichloroacetic acid
TEA Triethyl amine
TFA Trifluoroacetic acid
TFE Trifluoroethanol
THF Tetrahydrofuran
TLC Thin layer chromatography
TMS Tetramethylsilane
TPP Triphenylphosphine
Tr Trityl
UV Ultraviolet
GENERAL REMARKS

- Most of the reactions were carried out in oven- or flame-dried glassware with magnetic stirring under nitrogen atmosphere using dry, freshly distilled solvents.

- All the evaporations were carried out under reduced pressure on Buchi-rotary evaporator or Heidolph rotary evaporator below 45°C.

- Reactions were monitored by thin-layer chromatography (TLC) carried out on Merck TLC plates with UV light (256 nm), iodine, 7% ethanolic phosphomolybdenic acid-heat, anisaldehyde-H₂SO₄ in acetic acid-heat and 20% H₂SO₄ in methanol-heat, as developing agents.

- Silica gel 60-120 mesh, 100-200 mesh were used for column chromatography. Yields refer to chromatographically and spectroscopically homogeneous materials isolated unless otherwise noted.

- Proton magnetic resonances were recorded on Brukers 200 MHz and 500 MHz spectrophotometers using tetramethylsilane (TMS) as the internal standard. Chemical shifts have been expressed in δ values downfield from TMS. Multiplicity of NMR signals is designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). ¹³C NMR spectra were recorded with complete proton decoupling.

- Mass spectra were recorded on EIMS (Shimadzu) and ESI-esquire 3000 Bruker Daltonics instrument. In the ESI-MS spectra, the M⁺ + 1 peak corresponds to the proton (H) adduct, the M⁺ + 23 peak corresponds to the sodium (Na) adduct and the M⁺ + 39 corresponds to the potassium (K) adduct.

- Infrared spectra (KBr discs) were recorded on a Bruker Vector 22 spectrophotometer with sodium chloride optics.
- Melting point was recorded on Buchi 535 melting point apparatus and are uncorrected.

- Optical rotations were measured with Perkin digital polarimeter.

- All solvents and reagents were purified and dried according to procedures given in Vogel’s Text book of practical organic chemistry.

- Moisture sensitive reactions were carried out using standard syringe septum techniques.

- All the nomenclature were given according to Chemical Abstract index. For the unpublished compounds the nomenclature was given following ACD/ChemSketch version.
CONTENTS

CHAPTER-I: Design and synthesis of novel peptide based cancer vaccine conjugates

1.0. General introduction to cancer (01-03)
1.1. Cancer immunotherapy (04-04)
 1.1.1. Advances in immunotherapy (05-05)
 1.1.2. Development of cancer vaccines (05-07)
 1.1.3. Mechanism of action of cancer vaccines (07-08)
 1.1.4. Boosting the Immune Response (09-10)
 1.1.5. Earlier approaches to cancer immunotherapy (10-18)
 1.1.6. Adjuvants, introduction and role in vaccine development (18-20)
 1.1.7. The adjuvant Pam2Cys and the synthetic strategies involved (20-25)
 1.1.8. Present approach for the synthesis of novel peptide based cancer vaccine conjugates (25-25)
 1.1.9. T-cell epitopes as tumour specific antigens (26-27)
1.2.0. Results and discussion (27-31)
 1.2.1. Experimental (31-40)
 1.2.2. Conclusion (40-41)
 1.2.3. References (41-44)

SPECTRA

CHAPTER-II: Design and synthesis of new secondary leads based on natural product scaffolds

Part-I. Design and synthesis of novel natural product based anticancer chemotherapeutics

2.1.0. General introduction to cancer and cancer chemotherapy (45-46)
2.1.1. Lead compounds from natural products (46-48)
2.1.2. Podophyllotoxin derivatives as novel antitumor agents (topo-II inhibitors) (48-56)
2.1.3. Sesquiterpenoids as anticancer agents (56-57)
2.1.4. Parthenin (57-58)
2.1.5. Biological importance of parthenin (58-59)

Section-A: Synthesis and biological evaluation of triazolyl podophyllotoxins as potential anticancer agents

2.2.0. Introduction (60-62)
2.2.1. Present work (62-67)
2.2.2. Biological activity (68-70)
2.2.3. Experimental (70-78)
2.2.4. Conclusion (78-78)
Section-B: Design and synthesis of spiroaziridine derivatives of parthenin as potential anticancer agents.

2.3.0. Present approach
2.3.1. Experimental section
2.3.2. Biological activity
2.3.3. Conclusion

Part-II. Synthesis of novel D-ring substituted steroidal heterocycles

2.4.0. General introduction to steroids
2.4.1. Therapeutic importance of steroidal heterocycles

Section-A: Synthesis of novel D-ring substituted steroidal isoxazolines

2.5.0. Biological importance of isoxazolines
2.5.1. Steroidal isoxazolines (literature background)
2.5.2. Present approach
2.5.3. Experimental
2.5.4. Results and discussion
2.5.5. Conclusion

Section-B: Synthesis of novel D-ring substituted steroidal pyrazolines

2.6.0. Introduction
2.6.1. Previous approaches
2.6.2. Present approach
2.6.3. Experimental section
2.6.4. Results and discussion
2.6.5. References

CHAPTER-III: Development of new synthetic methodologies

Section-A: Synthesis of novel unsymmetrical bis-1, 2, 3-triazoles

3.1.0. General introduction
3.1.1. Previous methods for the synthesis of triazoles and bis-triazoles
3.1.2. Present approach
3.1.3. Experimental
3.1.4. Conclusion

Section-B: Liquid phase synthesis of glycidic esters

3.2.0. Introduction
3.2.1. Present approach
3.2.2. Results and discussion
3.2.3. Experimental
3.2.4. Conclusion
3.2.5. References