Chapter 8

PROPERTIES OF MULTI VALENT ANALYTIC
FUNCTIONS AND SOME RESULTS FOR UNI VALENT FUNCTIONS
DEFINED BY A GENERALIZED SALAGEAN OPERATOR

7.0 Introduction

Here in this chapter we verified properties like Diff. Subordination, Convolution and Quasi-Convolution of an analytic schlicht i.e. a single valued function & Multi valent functns with +ive, -ve Taylor series expansion.

8.1 Preliminary Results

Here the term “Convolution” arises from the formula

\[h(r^2 e^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i(\theta-t)}) g(re^{it}) dt, \quad r < 1. \]

\[\ell(Z) = \sum_{m=1}^{\infty} z^m = \frac{z}{1-z}. \]

Acts as the identity element under Convolution \(u \ast \ell = u = u. \)

Literature on Diff. Subordination is available in nature for example [31], [74], [34], [90] [121], [131], [13], [16], [127] [76] etc.

Here in this topic throughout we are assuming

\[a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta+\zeta)}{\epsilon(\delta+r)+q} = \frac{ru}{\lambda}, \zeta \geq 0, \tau \geq 0, \]

\[\delta \geq 0, 0 < \epsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}. \]

8.2 Preliminary Lemma

Lemma 8.2.1 let \(f(z) \) is given as follows

\[u(z) = z - \sum_{k=2}^{\infty} a_{2k}z^{2k}, \]

I. e. here after it is to be taken as function \(u(z) \) contained in \(T^*_2(n, m, \gamma, \sigma, \eta, \zeta, A, B, \alpha) \) if &

\[\sum_{k=2}^{\infty} \left(\frac{(2k-1)+2(2k-\infty)B-2(1-\infty)A(1+2k-1)(1+\epsilon(\delta+r)+q)n(1-\gamma+\eta[1+(2k-1)(1+\epsilon(\delta+r)+q)])}{{B-2A}(1-\infty)} \right) \]
\[x \cdot a_{2k} \leq 1 \]

Proof Since \(u(z) \in T^*_2(n, m, \gamma, \sigma, \eta, \varsigma, A, B, \alpha) \), and

\[
T^* (n, m, \gamma, \sigma, \eta, \varsigma, A, B, \alpha) = \left\{ u : u \in T^* \mid \frac{(1-\gamma)z[D^n u(z)]'' + \gamma z[D^m u(z)]''}{(1-\gamma)D^n u(z) + \gamma D^m u(z)} \in P(A, B, \alpha) \right\}
\]

I.e. here, after it is to be taken

\[
\frac{(1-\gamma)z[D^n u(z)]'' + \gamma z[D^m u(z)]''}{(1-\gamma)D^n u(z) + \gamma D^m u(z)} \leq \frac{1 + 2(1-\alpha)A + 2\alpha B}{1 + 2Bz}.
\]

Where, \(X = 1 + (2k - 1)\sigma(\eta + \varsigma) \).

By definition of Subordination, there exists \(w(z) \) Holomorphic (an analytic) and contained in \(U \).

\[
\frac{x - \Sigma_{k=2}^{\infty} 2kX^n(1-\gamma+\gamma X^m)a_{2k}z^{2k}}{y - \Sigma_{k=2}^{\infty} 2[(2k-\alpha)B - (1-\alpha)A]X^n(1-\gamma+\gamma X^m)a_{2k}z^{2k}} < \frac{1 + 2(1-\alpha)A + 2\alpha B}{1 + 2Bz}.
\]

I.e. here, after it is to be taken as by simple calculations, we obtain

\[
w(z) = \frac{\Sigma_{k=2}^{\infty} (2k-1)X^n(1-\gamma+\gamma X^m)a_{2k}z^{2k}}{2(B-A)(1-\alpha) - \Sigma_{k=2}^{\infty} 2[(2k-\alpha)B - (1-\alpha)A]X^n(1-\gamma+\gamma X^m)a_{2k}z^{2k-1}} < 1
\]

Thus by noting \(|w(z)| < 1\), we get

\[
w(z) = \frac{\Sigma_{k=2}^{\infty} (2k-1)X^n(1-\gamma+\gamma X^m)a_{2k}z^{2k}}{2(B-A)(1-\alpha) - \Sigma_{k=2}^{\infty} 2[(2k-\alpha)B - (1-\alpha)A]X^n(1-\gamma+\gamma X^m)a_{2k}z^{2k-1}} < 1
\]

Letting \(z \to 1^{-} \), we have obtained

\[
\Sigma_{k=2}^{\infty} (2k-1)X^n(1-\gamma+\gamma X^m)a_{2k} < 1
\]

\[
\therefore \Sigma_{k=2}^{\infty} (2k-1)X^n(1-\gamma+\gamma X^m)a_{2k} < 1
\]

And where,

\[
\begin{aligned}
a_{2k} &\geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(n+\varsigma)}{\epsilon(\delta+t)+\eta} = \frac{a\mu}{\lambda}, \varsigma \geq 0, \tau \geq 0, \\
\delta &\geq 0, 0 < \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, n \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}.
\end{aligned}
\]

8.3 Applications of Differential Subordination

Let us assume that \(A(p, 1) \) represents the class of functions as given below
\[u(z) = z^q + \sum_{n=1}^{\infty} a_{q+n} z^{q+n} \quad (a_n \geq 0; \ q \in \mathbb{N}). \] (8.3.1)

These functions are Holomorphic (an analytic) in the open unit disk \(U \) defined as
\[U = \{ z : |z| < 1 \} \]
Let \(u(z), v(z) \in A(q, 1) \), where
\[u(z) = z^q + \sum_{n=1}^{\infty} a_{q+n} z^{q+n} \]
And
\[v(z) = z^q + \sum_{n=1}^{\infty} b_{q+n} z^{q+n}. \]
I.e. here after it is to be taken as the Convolution
\[(u * v)(z) = z^q + \sum_{n=1}^{\infty} a_{q+n} b_{q+n} z^{q+n} \] (8.3.2)
Let \(A, B, \sigma, \eta, \zeta, \epsilon, \delta, \tau \) be fixed real numbers. \(u(z) \in A(q, 1) \) Contained in \(I_{\sigma, \eta, \zeta, \epsilon, \delta, \tau}(q; A, B) \)
gives
\[\ell_{\epsilon, \delta, \tau, \eta, \zeta}(u) < \]
\[\frac{1+2Ax}{1+2Bz} \quad (z \in U) \] (8.3.3)
\[\ell_{\epsilon, \delta, \tau, \eta, \zeta}(u) = [1 - \sigma(\eta + \zeta)] \frac{H_{q, \lambda}^{\lambda-1} f(z)}{z^q} + \sigma(\eta + \zeta) \frac{\partial [\delta(\epsilon + \tau) + q u(z)]}{z^q} \]
Where,
\[H_{q, \lambda}^{\lambda-1} u(z) = z^q + \sum_{n=1}^{\infty} \frac{\Gamma(\lambda+n)}{\Gamma(\lambda n!)} a_{q+n} z^{q+n}. \] (8.3.4)
Hence from above relation we have been obtained
\[z[H_{q, \lambda}^{\lambda-1} u(z)]' = \lambda H_{q, \lambda}^{\lambda-1} u(z) - (\lambda - q) H_{q, \lambda}^{\lambda-1} u(z). \] (8.3.5)
This work is due to the motivation of [59] & Raut [49].
\[s.t. \quad Re \left[\frac{u(z)}{e^{i\theta H_{q, \lambda}^{\lambda-1}(z)}} \right] > \alpha \quad \text{for} \quad z \in U. \]

Theorem 8.3.1 If a function \(u(z) \in A(q, 1) \) i.e. here after it is to be taken as
\[z[z^{1-q} H_{q, \lambda}^{\lambda-1} u(z)]' = \lambda[z^{1-q} H_{q, \lambda}^{\lambda-1} u(z)]' - (\epsilon \delta + \tau + q) [z^{1-q} H_{q, \lambda}^{\lambda-1} u(z)]'. \] (8.3.6)

Proof we know that
\[z[H_{q, \lambda}^{\lambda-1} u(z)]' = \lambda H_{q, \lambda}^{\lambda-1} u(z) - (\lambda - q) H_{q, \lambda}^{\lambda-1} u(z). \]
\[\therefore z[H_{q, \lambda}^{\lambda-1} u(z)]' + 1 - q H_{q, \lambda}^{\lambda-1} u(z) \]
\[= \lambda H_{q, \lambda}^{\lambda-1} u(z) + (1 - \lambda) H_{q, \lambda}^{\lambda-1} u(z). \]
But owing to
\[z[H_{q, \lambda}^{\lambda-1} u(z)]' + (1 - q) H_{q, \lambda}^{\lambda-1} u(z) = z^{q} [z^{1-q} H_{q, \lambda}^{\lambda-1} u(z)]'. \]
We obtain $z^{1-q}H_q^λ \lambda u(z)^\prime = \lambda [z^{1-q}H_q^{λ-1} u(z)] + (1-\lambda) [z^{1-q}H_q^{λ} u(z)]$.

Differentiating both sides of above equation we get

$$z^{1-q}H_q^{λ-1} u(z)^{\prime\prime} = \lambda [z^{1-q}H_q^{λ} u(z)]^\prime - \lambda [z^{1-q}H_q^{λ-1} u(z)]^\prime.$$

And where,

$$\left(\begin{array}{c} a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta+\zeta)}{\epsilon(\delta+\tau)+q} = \frac{\alpha}{\lambda}, \zeta \geq 0, \tau \geq 0, \\
\delta \geq 0, 0 < \epsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2} \end{array} \right)$$

Thus theorem holds true.

Corollary 8.3.1 Let $u(z)$ belongs to $A(q, 1)$ and $z^{1-q}D^{\epsilon(\delta+\tau)+q-1} u(z)$ is convex univalent (or schlicht i.e. a single valued function) function. I.e. here after it is to be taken as $z^{1-q}H_q^{λ-1} u(z)$ is close-to-convex of order $\frac{\lambda-1}{|\lambda|}$ With respect to $z^{1-p}H_p^{λ-1} u(z)$.

Proof Since

$$z^{1-q}H_q^{λ-1} u(z)^{\prime\prime} = \lambda [z^{1-q}H_q^{λ} u(z)]^\prime - \lambda [z^{1-q}H_q^{λ-1} u(z)]^\prime.$$

we obtain

$$\frac{\lambda [z^{1-q}H_q^{λ} u(z)]^\prime}{|\lambda|} = \frac{\lambda [z^{1-q}H_q^{λ-1} u(z)]^\prime}{|\lambda|} + 1$$

Since $z^{1-q}H_q^{λ-1} u(z)$ which is a convex function.

$$Re \left(\frac{\lambda [z^{1-q}H_q^{λ} u(z)]^\prime}{|\lambda|} \right) = Re \left(\frac{\lambda [z^{1-q}H_q^{λ-1} u(z)]^\prime}{|\lambda|} \right) > Re \frac{\lambda-1}{|\lambda|}.$$

And where,

$$\left(\begin{array}{c} a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta+\zeta)}{\epsilon(\delta+\tau)+q} = \frac{\alpha}{\lambda}, \zeta \geq 0, \tau \geq 0, \\
\delta \geq 0, 0 < \epsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2} \end{array} \right)$$

therefore, by definition of close-to-convex we have obtained the required result.

Theorem 8.3.2 Let us assume that the functions

$$f_1(z), f_2(z) \in A(q, 1),$$

$$\ell_{\epsilon, \delta, \tau, q} [f_1(z)] < h_1(z) \text{ and } \ell_{\epsilon, \delta, \tau, q} [f_2(z)] < h_2(z).$$
Here $h_1(z), h_2(z)$ are convex univalent (or schlicht) in the disk U and if $\frac{\lambda}{a \mu} \geq 0, \lambda > a \mu > 0$ i.

e. here after it is to be taken as

$$\ell_{e, \delta, \tau, q}[H_q^{\lambda-1}(h_1 * h_2)(z)]$$

$$< \frac{\lambda}{a \mu} z^\frac{\lambda}{a \mu} \int_0^z t^\frac{\lambda}{a \mu} [h_1(t) * h_2(t)] dt < [h_1(z) * h_2(z)]$$

Proof Since $\ell_{e, \delta, \tau, q}[f_1(z)] < h_1(z)$ And $l_{e, \delta, \tau, q}[f_2(z)] < h_2(z)$

I. e. here after it is to be taken as we have

$$\ell_{e, \delta, \tau, p}[f_1(z)] \ast \ell_{e, \delta, \tau, p}[f_2(z)] < h_1(z) \ast h_2(z).$$

And by [60], the Convolution of convex Univalent (or schlicht) functions is also the convex Univalent (or schlicht) function. Now, let

$$p(z) = \ell_{e, \delta, \tau, q}[H_q^{\lambda-1}(f_1 \ast f_1)(z)]$$

$$= [1 - a \mu \frac{H_q^{\lambda-1}[H_q^{\lambda-1}(f_1 * f_1)]}{z^q} + a \mu \frac{H_q^{\lambda-1}[H_q^{\lambda-1}(f_1 * f_1)]}{z^q}]$$

I. e. here after it is to be taken as $p(z)$ is Holomorphic (an analytic) function and $p(0) = 1$ in U.

Since we have

$$z[H_q^{\lambda-1}u(z)]' = \lambda H_q^{\lambda}f(z) - (\lambda - p)H_q^{\lambda-1}u(z)$$

$$\therefore p(z) + \frac{a \mu}{\lambda} p(z)' = \ell_{e, \delta, \tau, q}[H_q^{\lambda-1}(f_1 \ast f_1)(z)] + \frac{a \mu}{\lambda} \ell_{e, \delta, \tau, q}[H_q^{\lambda-1}(f_1 \ast f_1)(z)]'$$

$$= \left[1 - 2 \frac{a \mu}{\lambda} q + \left(\frac{a \mu}{\lambda}\right)^2 q^2\right] z^{-q} \left(H_q^{\lambda-1} f_1(z) \ast D^{\mu+q-1} f_2(z)\right)$$

$$+ \left[\frac{a \mu}{\lambda} q \left(1 - \frac{a \mu}{\lambda} q\right) + \frac{a \mu}{\lambda} \left(1 - q\right)\right] z^{-q} \left(H_q^{\lambda-1} f_1(z) \ast H_q^{\lambda-1} f_2(z)\right)'$$

$$+ \left(\frac{a \mu}{\lambda}\right)^2 z^{-q} \left(H_q^{\lambda-1} f_1(z) \ast H_q^{\lambda-1} f_2(z)\right)''.$$
\[
\phi(z) < \frac{\lambda}{\alpha \mu} \int_0^z \frac{t^{\alpha\mu-1}}{[h_1(t) * h_2(t)]} dt \leq [h_1(z) * h_2(z)].
\]

Where,
\[
\begin{pmatrix}
\alpha_{2k} \geq 0, n \geq 0, m \geq 0, \, 0 \leq \gamma \leq 1, \frac{\sigma(\eta + \zeta)}{\varepsilon(\delta + \tau) + q} = \frac{\alpha \mu}{\lambda}, \, \zeta \geq 0, \, \tau \geq 0,
\delta \geq 0, 0 < \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}
\end{pmatrix}
\]

Theorem 8.3.3 Let \(f_1(z) \in \mathcal{L}_{\sigma, \eta, \delta, \tau, q}(\mathbb{C}; A_1, B_1) \) and \(f_2(z) \in \mathcal{L}_{\sigma, \eta, \delta, \tau, q}(\mathbb{C}; A_2, B_2) \)

Where \(\mathcal{L}_{\sigma, \eta, \delta, \tau, q}[f_1(z)] < \frac{1 + A_1 z}{1 + B_1 z} \) & \(\mathcal{L}_{\sigma, \eta, \delta, \tau, q}[f_2(z)] < \frac{1 + A_2 z}{1 + B_2 z} \)

\[-1 \leq B_1 < A_1 \leq 1; -1 \leq B_2 < A_2 \leq 1\]
\[\varepsilon(\delta + \tau) + q > \sigma(\eta + \zeta) > 0 \quad \text{And} \quad \frac{\lambda}{\alpha \mu} \geq 0.\]

\[
\therefore \mathcal{L}_{\sigma, \eta, \delta, \tau, q}[H_q^{\lambda-1}(f_1 * f_2)(z)] \leq 1 + (A_1 - B_1)(A_2 - B_2) \frac{\lambda}{\alpha \mu} \int_0^z \frac{t^{\alpha\mu-1}}{[1 - B_1 B_2 t z]^{-1}} dt = q(z).
\]

Where,
\[
q(z) = 1 + \frac{\lambda(A_1 - B_1)(A_2 - B_2) z}{\lambda + \alpha \mu}[1 - B_1 B_2 t z]^{-1} \binom{1}{2} \binom{1}{1 - B_1 B_2 z - 1}.
\]

Proof Since \(\frac{1 + A_1 z}{1 + B_1 z} \) and \(\frac{1 + A_2 z}{1 + B_2 z} \) are univalent (or schlicht i.e. a single valued function) convex

Holomorphic (an analytic) functions,
\[
\frac{1 + A_1 z}{1 + B_1 z} = \left[1 + (A_2 - B_2) \frac{z}{1 + B_2 z} \right] = 1 + (A_1 - B_1)(A_2 - B_2) \frac{z}{1 + B_1 B_2 z}.
\]

Thus, by Theorem 8.3.2
\[
\mathcal{L}_{\sigma, \eta, \delta, \tau, q}[H_q^{\lambda-1}(f_1 * f_2)(z)] \leq 1 + (A_1 - B_1)(A_2 - B_2) \frac{\lambda}{\alpha \mu} \int_0^z \frac{t^{\alpha\mu-1}}{[1 - B_1 B_2 t]^{-1}} dt
\]
\[
q(z) = \frac{1}{\sigma(\eta + \zeta)} \int_0^z \frac{t^{\alpha\mu-1}}{[1 - B_1 B_2 t]^{-1}} dt (1 + \frac{(A_1 - B_1)(A_2 - B_2) t}{1 - B_1 B_2 t}) dt
\]
\[
= 1 + (A_1 - B_1)(A_1 - B_2) \frac{\lambda}{\alpha \mu} \int_0^z \frac{t^{\alpha\mu-1}}{[1 - B_1 B_2 t]^{-1}} ds.
\]

And where,
\[
\begin{align*}
(a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta + \varsigma)}{\epsilon(\delta + \tau) + q} = \frac{a}{\lambda}, \varsigma \geq 0, \tau \geq 0, \\
\delta \geq 0, 0 < \varepsilon \leq \frac{1}{z}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{z}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}.
\end{align*}
\]

Hence we obtained the required result. Putting \(A_1 = A_2 = B_1 = B_2 = 1 \) in Theorem 8.3.3, we have next corollary.

Corollary 8.3.2 Let us assume that \(f_1(z), f_2(z) \in A(q, 1) \).

And let

\[
\ell_{\epsilon, \delta, \tau, \varphi}[f_1(z)] < \frac{1 + z}{1 - z} \quad \text{and} \quad \ell_{\epsilon, \delta, \tau, \varphi}[f_2(z)] < \frac{1 + z}{1 - z}
\]

\[
\therefore \ell_{\epsilon, \delta, \tau, \varphi}(f_1 * f_2)(z) < 1 + 4 \frac{\lambda}{\alpha \mu} \frac{z^q}{1 + z} \int_0^\frac{1}{1 + z} dt.
\]

Hence by putting \(\sigma(\eta + \varsigma) = 1, \epsilon(\delta + \tau) = 0 \) next result is obtained.

Corollary 8.3.3 Let us assume that \(f_1(z), f_2(z) \in A(q, 1) \).

And let

\[
\ell_{0, 0, 0, q}[f_1(z)] < \frac{1 + z}{1 - z} \quad \text{and} \quad \ell_{0, 0, 0, q}[f_2(z)] < \frac{1 + z}{1 - z}
\]

\[
\therefore \ell_{0, 0, 0, q}(f_1 * f_2)(z) < 1 + 4q z^{-q} \int_0^\frac{1}{1 + z} dt.
\]

\[
F_c(z) = \frac{c + q}{z^c} \int_0^z t^{c - 1} u(t) dt = \sum_{m=0}^\infty \frac{c + q}{c + n} z^n * u(z) \quad (8.3.8)
\]

Where, \(u(z) \in A(q, 1) \) And \(c + q > 0 \). Now since

\[
H_{q}^{\lambda - 1} u(z) = \frac{z^q}{(1 - z)\lambda} * u(z) = z^q + \sum_{n=1}^\infty \frac{\Gamma(\lambda + n)}{\Gamma(\lambda) a_n} a_n q z^n + q,
\]

I. e. here after it is to be taken as

\[
z[H_{q}^{\lambda - 1} f_c(z)]' = (c + q)H_{q}^{\lambda - 1} f(z) - cH_{q}^{\lambda - 1} f_c(z). \quad (8.3.9)
\]

Theorem 8.3.4 Let \(\mu, c \) be real numbers \((\mu \geq 0) \) and \(c + q > 0 \).

If \(f_1(z), f_2(z) \in A(q, 1) \) satisfy

\[
\frac{H_{q}^{\lambda - 1}(f_1 + f_2)(z)}{z^q} < \frac{(A_1 - B_1)(A_2 - B_2)z}{1 - B_1 B_2} \]

I. e. here after it is to be taken as

\[
\frac{H_{q}^{\lambda - 1}[F_c(z) + G_c(z)]}{z^q} < q(z) < \frac{(A_1 - B_1)(A_2 - B_2)z}{1 - B_1 B_2} \]

Where \(F_c(z) \) is defined as
\[
F_c(z) = \frac{c+q}{z^c} \int_0^z t^{c-1} u(t) dt = \sum_{n=q}^{\infty} \frac{c+q}{c+n} z^n * u(z)
\]

\[
H_{p\lambda}^{-1} f(z) = \frac{z^q}{(1-z)\lambda} * u(z) = z^q \sum_{n=1}^{\infty} \frac{\Gamma(\lambda+n)}{\Gamma(\lambda)} a_n + q z^{n+q}.
\]

I. e. here after it is to be taken as \(G_c(z) \) is defined as follows

\[
G_c(z) = \sum_{n=q}^{\infty} \frac{c+q}{c+n} z^n * f_2(z)
\]

And

\[
q(z) = 1 + (1 - B_1 B_2 z)^{-1} \frac{c+q}{c+n+1} (A_1 - B_1)
\]

\[
\times (A_2 - B_2)z 2F1 \left(1, 1; 2 + c + q; \frac{B_1 B_2 z}{B_1 B_2 z - 1}\right).
\]

Where,

\[
\left(a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta + \gamma)}{\epsilon(\delta + \tau + q)} = \frac{a_{2k}}{\lambda}, \gamma \geq 0, \tau \geq 0, \right)
\]

\[
\left(0 \leq \epsilon, \eta \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2} \right).
\]

Proof Let us assume that

\[
p(z) = \frac{H_q^{\lambda-1}(F_c G_c)(z)}{z^q},
\]

\[
\therefore p(z) \text{ is Holomorphic in the disk U s. t. } p(0) = 1. \text{ Since we know}
\]

\[
Z \left[H_q^{\lambda-1} f_c(z) \right]' = (c + q) H_q^{\lambda-1} u(z) - c H_q^{\lambda-1} f_c(z).
\]

\[
\therefore p(z) + \frac{zp'(z)}{c+q} = \frac{H_q^{\lambda-1}(F_c f_2)(z)}{z^q} \leq 1 + \frac{(A_1 - B_1)(A_2 - B_2)z}{1 - B_1 B_2 z}
\]

\[
\therefore \frac{H_q^{\lambda-1}(F_c G_c)(z)}{z^q} \leq q(z)
\]

\[
= (c + q) z^{-(c+q)} \int_0^z t^{c+q-1} \left(\frac{1 + A_1 t}{1 + B_1 t} \right) \left(\frac{1 + A_2 t}{1 + B_2 t} \right) dt
\]

\[
< 1 + \frac{(A_1 - B_1)(A_2 - B_2)z}{1 - B_1 B_2 z}
\]

Finally we obtain

\[
q(z) = 1 + (1 - B_1 B_2 z)^{-1} \frac{c+q}{c+n+1} (A_1 - B_1)
\]

\[
\times (A_2 - B_2)z 2F1 \left(1, 1; 2 + c + p; \frac{B_1 B_2 z}{B_1 B_2 z - 1}\right).
\]

If we put \(\delta = \tau = 0, p = A_1 = A_2 = 1, B_1 = B_2 = -1. \) In above Theorem 8.3.4, i. e. here after it is to be taken as we have next result.
Corollary 8.3.4 Let \(c + 1 > 0 \) where \(c \) a real number. If \(f_1(z), f_2(z) \in A(q, 1) \) and
\[
\frac{(f_1 \ast f_2)(z)}{z} < 1 + \frac{4z}{1-z}
\]
\[
\therefore \frac{[F_c(z) \ast G_c(z)]}{z} < q(z) < 1 + \frac{4z}{1-z}
\]
Where it is,
\[
F_c(z) = \sum_{n=1}^{\infty} \frac{c-z}{c+n} z^n \ast f_1(z),
\]
\[
G_c(z) = \sum_{n=1}^{\infty} \frac{c-z}{c+n} z^n \ast f_2(z),
\]
\[
q(z) = 1 + 4(1-z)^{-1} \frac{c+1}{c+2} 2F1 \left(1, 1; c + 3; \frac{z}{z-1}\right)
\]

8.4 Convolution and Quasi-Convolution Properties

Let
\[
u(z) = z - \sum_{k=2}^{\infty} a_k z^{2k} \quad (a_k \geq 0)
\]
Let \(P(A, B, \alpha) \) be Holomorphic (an analytic) in \(U \) that satisfies
\[
u(z) < \frac{1+(1-\alpha)A+\alpha B}{1+Bz}
\]
Where it is,
\[-1 \leq 2B < 2A \leq 1, 0 \leq \alpha < 1.
\]
Consider \(T^*_2 \) as subclass of \(T \) consisting
\[
u(z) = z - \sum_{k=2}^{\infty} a_k z^{2k}.
\]
we define
\[
T(n, m, \gamma, \eta, \zeta, A, B, \alpha)
\]
\[
= \left\{ u \in T^*: \frac{1-(\gamma)z[D^n u(z)]'+\gamma z[D^{n+m} u(z)]'}{(1-\gamma)D^n u(z)+\gamma D^{n+m} u(z)} \in P(A, B, \alpha) \right\}
\]
\[
T^*(n, m, \gamma, \eta, \zeta, A, B, \alpha) = \left\{ u \in T^*: \frac{1-(\gamma)z[D^n u(z)]'+\gamma z[D^{n+m} u(z)]'}{(1-\gamma)D^n u(z)+\gamma D^{n+m} u(z)} \in P(A, B, \alpha) \right\}
\]
\[
S^*(n, \eta, \zeta, A, B, \alpha) = T(n, m, 0, \sigma, \eta, \zeta, A, B, \alpha)
\]
\[
K(n, \eta, \zeta, A, B, \alpha) = T(n, m, 1, \sigma, \eta, \zeta, A, B, \alpha)
\]
\[
S^*_2(n, \eta, \zeta, A, B, \alpha) = T^*_2(n, m, 0, \sigma, \eta, \zeta, A, B, \alpha)
\]
\[
K^*_2(n, \eta, \zeta, A, B, \alpha) = T^*_2(n, m, 1, \sigma, \eta, \zeta, A, B, \alpha)
\]
\[
D^n u(z) = z + \sum_{k=2}^{\infty} [1 + (k - 1)\sigma(\eta + \zeta)] a_k z^{2k}
\]
\[
D^n u(z) = z + \sum_{k=2}^{\infty} [1 + (2k - 1)\sigma(\eta + \zeta)] a_k z^{2k}
\]

If \(u(z) = z - \sum_{k=2}^{\infty} a_k z^{2k} \) and
\[
v(z) = z - \sum_{k=2}^{\infty} b_{2k} z^{2k} \quad (a_{2k}, b_{2k} \geq 0)
\]
And where,
\[
\left(a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta + \zeta)}{\varepsilon(\delta + \tau) + q} = \frac{a}{\lambda}, \zeta \geq 0, \tau \geq 0, \frac{\delta}{\varepsilon} \geq 0, 0 \leq \varepsilon \leq 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2} \right)
\]

I. e. here after it is to be taken as the convolution is defined as follows

\[
u(z) * v(z) = z - \sum_{k=2}^{\infty} a_{2k} b_{2k} z^{2k}
\]

(8.4.10)

In this section we are proposing few of generalized work given by [128].

Properties of schlicht i. e. a single valued functn with -ve coeffs of type

\[
u(z) = z - \sum_{k=2}^{\infty} a_{2k} z^{2k}
\]

are studied by the researchers like, [62], [62]. They have also worked on the convolution properties of schlicht i. e. a single valued function with -ve coeffs, [116] Schlicht i. e. a single valued function with missing coeffs.

Theorem 8.4.1 If \(u(z) \) is as given in (8.4.1) & \(v(z) = z - \sum_{k=2}^{\infty} b_{2k} z^{2k} \)

Where, \(a_{2k} \geq 0, b_{2k} \geq 0 \) and

\[
u(z), v(z) \in T_{2}^*(n, m, \gamma, \sigma, \eta, \zeta, A, B, \alpha),
\]

I. e. here after it is to be taken as

\[
u(z) = z - \sum_{k=2}^{\infty} a_{2k} b_{2k} z^{2k} \in T_{2}^*(n, m, \gamma, \sigma, \eta, \zeta, A_1, B_1, \alpha).
\]

With

\[
A_1 \leq 1 - 2j, B_1 \geq \frac{j + A_1}{1 - j}
\]

Where,

\[
\frac{[6(1-\infty)(B-A)(B-C)]}{[3+2(4-\infty)B-2(1-\infty)A][3+(4-\infty)D-(1-\infty)C](1+3\mu)\lambda^m} \times \frac{1}{[(1-\gamma+y(1+3\mu)m)-2(\beta-A)(\beta-c)(1-\lambda)^{2}]
\]

\[

\sum_{k=2}^{\infty} \left[(2k-1) + 2(2k-\alpha)B - 2(1-\infty)A \right]
\times \left[\left(1 + (2k-1) \mu \right)^m (1 - \gamma + y)^{1 + (2k-1) \mu} \right] \frac{1}{2(\beta-A)(1-\lambda)^{m}} a_{2k} \leq 1
\]

(8.4.11)

\[
\sum_{k=2}^{\infty} \left[(2k-1) + 2(2k-\alpha)B - 2(1-\infty)A \right] X^n
\times (1 - \gamma + y X^m) \left[2(\beta-A)(1-\lambda)^{-1} \right] a_{2k} \leq 1
\]

(8.4.12)

\[
\sum_{k=2}^{\infty} \left[(2k-1) + 2(2k-\alpha)B - 2(1-\infty)A \right] X^n
\]

\[
\text{Proof} \quad \text{Since } u \text{ and } v \text{ belong to, } T_{2}^*(n, m, \gamma, \sigma, \eta, \zeta, A, B, \alpha) \text{ therefore by lemma 8.2.1}
\]

\[
\sum_{k=2}^{\infty} \left[(2k-1) + 2(2k-\alpha)B - 2(1-\infty)A \right]
\times \left[\left(1 + (2k-1) \mu \right)^m (1 - \gamma + y)^{1 + (2k-1) \mu} \right] \frac{1}{2(\beta-A)(1-\lambda)^{m}} a_{2k} \leq 1
\]

(8.4.11)
where $X = 1 + (2k - 1)\sigma(\eta + \zeta)$, we contemplate to find A_1, B_1, as

$$-I \leq A_1 < B_1 \leq 1$$

for

$$q(z) \in T_s(n, m, \gamma, \sigma, \eta, \zeta, A_1, B_1, \infty),$$

∴\[\sum_{k=2}^{\infty}[(2k - 1) + (2k - \infty)B_1 - (1 - \infty)A_1]X^n \]

\[\times (1 - \gamma + \gamma X^m)[(B_1 - A_1)(1 - \infty)]^{-1}a_{2k}b_{2k} \leq 1. \] (8.4.14)

by using Cauchy-Schwarz inequality, we get

$$\sum_{k=2}^{\infty}V(a_{2k}b_{2k}) = (\sum_{k=2}^{\infty}Va_{2k})^{\frac{1}{2}}(\sum_{k=2}^{\infty}Vb_{2k})^{\frac{1}{2}} \leq 1,$$

(8.4.15)

$$V = [(2k - 1) + 2(2k - \infty)B - 2(1 - \infty)A]X^n \times (1 - \gamma + \gamma X^m)[2(B - A)(1 - \infty)]^{-1}$$

(8.4.16)

If

$$V_1(a_{2k}b_{2k}) \leq V(a_{2k}b_{2k})^{\frac{1}{2}},$$

i.e., hereafter it is to be taken as the above result is true, where

$$V_1 = [(2k - 1) + (2k - \infty)B_1 - (1 - \infty)A_1]X^n

(1 - \gamma + \gamma X^m)[(B_1 - A_1)(1 - \infty)]^{-1}$$

(8.4.17)

or

$$V_1(a_{2k}b_{2k})^{\frac{1}{2}} \leq V (k = 2, 3, \ldots)$$

According to (3.24)

$$a_{2k}^{\frac{1}{2}} \leq V^{-1}$$

(8.4.18)

Thus, to find V_1 as

$$V_1 = V^2$$

(8.4.19)

∴\[[(2k - 1) + (2k - \infty)B_1 - (1 - \infty)A_1]X^n(1 - \gamma + \gamma X^m) \leq V^2[(B_1 - A_1)(1 - \infty)] \] (8.4.20)

$$A_1 = \frac{V^2[(1 - \infty)B_1 - [(2k - 1) + (2k - \infty)B]X^n(1 - \gamma + \gamma X^m)]}{(1 - \infty)[V^2X^n(1 - \gamma + \gamma X^m)]}.$$

(8.4.21)

Hence

$$V^2 \geq X^n(1 - \gamma + \gamma X^m) \text{ for } k \geq 1$$

From (8.4.21) we can get

$$\frac{(B_1 - A_1)}{(B_1 - 1)} \geq \frac{(2k - 1)X^n(1 - \gamma + \gamma X^m)}{(1 - \infty)[V^2X^n(1 - \gamma + \gamma X^m)]} \text{ for } k \geq 2$$

(8.4.22)

Thus r. h. s. of (8.4.22) decreases as k increases, i.e., hereafter it is to be taken as it has
maximum for \(k = 2\), i.e., hereafter it is to be taken as (8.4.22) is true if

\[
\frac{(B_1 - A_1)}{(1 - 1)} \leq \frac{12(1 - \infty)(B - A)^2}{[3 + 2(4 - \infty)B - 2(1 - \infty)A]^2(1 + 3a\mu(n - 1)(1 - \gamma + \gamma(1 - 3a\mu)^m) - 4(B - A)^2(1 - \infty)^2} = j
\]

(8.4.23)

Hence \(j < 1\). Putting \(A_1\) in (8.4.23),

\[
B_1 \geq \frac{j^1 + A_1}{1 - 1},
\]

(8.4.24)

Where it is obvious for all

\[
\left(a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta + \zeta)}{\epsilon(\delta + \tau)} = \frac{a\mu}{\lambda}, \zeta \geq 0, \tau \geq 0, \delta \geq 0, 0 < \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2} \right)
\]

\(-1 \leq A_1 < B_1 \leq 1\). The proof is completed.

Corollary 8.4.1 Let us assume that the functions \(u(z)\) & \(v(z)\) are as given in (8.4.1)

Such as \(u(z), v(z) \in S^*_2(n, \sigma, \eta, \zeta, A, B, \alpha)\),

\[
q(z) = z - \sum_{k=2}^{\infty} a_{2k} b_{2k} z^{2k} \in S^*_2(n, \sigma, \eta, \zeta, A_1, B_1, \alpha)
\]

With,

\[-1 \leq A_1 < B_1 \leq 1, -\frac{1}{2} \leq B < A \leq \frac{1}{2}\]

Where it is for

\[
A_1 \leq 1 - 2j_1, B_1 \geq \frac{j^1 + A_1}{1 - j_1},
\]

\[
j_1 = \frac{12(1 - \infty)(B - A)^2}{[3 + 2(4 - \infty)B - 2(1 - \infty)A]^2(1 + 3a\mu)^n - 4(B - A)^2(1 - \infty)^2}
\]

Putting \(n = \infty = 0\) in corol. 8.3.1, we obtain next corollary due to [128].

Corollary 8.4.2 Let us assume that the functions \(u(z)\) & \(v(z)\) are as given in (8.4.1)

Defined as \(u(z), v(z) \in S^*_2(0,0,0,0, A, B, 0)\),

\[
q(z) = z - \sum_{k=2}^{\infty} a_{2k} b_{2k} z^{2k} \in S^*_2(0,0,0,0, A_1, B_1, 0).
\]

Where it is for all

\[
a_{2k} \geq 0, b_{2k} \geq 0, -\frac{1}{2} \leq B < A \leq \frac{1}{2}
\]

With

\[
A_1 \leq 1 - 2j_2, B_1 \geq \frac{j^2 + A_1}{1 - j_2},
\]
Theorem 8.4.2 Let us assume that \(u(z) \in T_2^* (n, m, \gamma, \eta, \zeta, A, B) \) and \(v(z) \in T_2^* (n, m, \gamma, \eta, \zeta, C, D) \) i. e. here after it is to be taken as
\[u(z) \ast v(z) \in T_2^* (n, m, \gamma, \eta, \zeta, E, F) \], where
\[\Box \leq 1 - 2j, F \geq \frac{j+E}{1-j} \]
Where,
\[j = \frac{[6(1-\infty)(B-A)(D-C)]}{[3+2(4-\infty)B-2(1-\infty)A][3+(4-\infty)D-(1-\infty)C][1+3a \mu]^n} \times \frac{1}{[1-\gamma+\gamma(1+3a \mu)^m]-2(B-A)(D-C)(1-\infty)^2} \]

Proof Using Thm 8.3.1, & Lemma 8.2.1,
\[\frac{[2k(F+1)-(1-\infty F)+(1-\infty)E)]X^n(1-\gamma+\gamma X^m)}{(F-E)(1-\infty)} \]
\[\leq \frac{[2k(2B+1)-(1+2a \beta B+2(1-\infty)A)]X^n(1-\gamma+\gamma X^m)}{2(B-A)(1-\infty)} \times \frac{[2k(D+1)-(1+\alpha D+1-\infty)C)]X^n(1-\gamma+\gamma X^m)}{(D-C)(1-\infty)} = d, \] (8.4.25)
Where \(X = [1+(2k-1)a \mu], \ a \mu \geq 0. \)
I. e. here after it is to be taken as by simple calculations we have
\[\frac{F-E}{F+1} \geq \frac{(2k-1)X^n(1-\gamma+\gamma X^m)}{(1-\alpha)[d-X^n(1-\gamma+\gamma X^m)]^2} \] (8.4.26)
i. e. here after it is to be taken as the r. h. s. of (8.4.26) decreasing in accordance with increase in k and it has max for k= 2, i. e. here after it is to be taken as we get
\[\frac{F-E}{F+1} \geq \frac{[6(1-\infty)(B-A)(D-C)]}{[3+2(4-\infty)B-2(1-\infty)A][3+(4-\infty)D-(1-\infty)C][1+3a \mu]^n} \times \frac{1}{[1-\gamma+\gamma(1+3a \mu)^m]-2(B-A)(D-C)(1-\infty)^2} \]
\[= j \] (8.4.27)

Corollary 8.4.3 Let us assume that \(u(z) \in S_2^* (n, \sigma, \eta, \zeta, A, B) \) and \(v(z) \in S_2^* (n, \sigma, \eta, \zeta, C, D) \) i. e. here after it is to be taken as
\[u(z) \ast v(z) \in S_2^* (n, \sigma, \eta, \zeta, E, F) \], where
\[E \leq 1 - 2j_1, \quad F \geq \frac{j_1 + E}{1 - j_1} \]

With

\[\dot{j}_1 = \frac{6(1 - \infty)(B - A)(D - C)}{[3 + 2(4 - \infty)B - 2(1 - \infty)A]} \times \frac{1}{[(3 + 4 - \infty)D - (1 - \infty)C)(1 + 3\sigma(\eta + \zeta))^{n - 2}(B - A)(D - c)(1 - \infty)^2]} \]

Assuming \(\alpha = n = 0 \) and using the reference [128] we will obtain next result.

Corollary 8.4.4 Let us assume that \(u(z) \in S_2^*(0,0,0,0,A,B,0) \) & \(v(z) \in S_2^*(0,0,0,0,C,D,0) \) i.e. hereafter it is to be taken as \(u(z) \ast v(z) \in S_2^*(0,0,0,0,E,F,0) \), where

\[E \leq 1 - 2j_2, \quad F \geq \frac{j_2 + E}{1 - j_2} \]

Where,

\[\dot{j}_2 = \frac{6(B-A)(D-C)}{(3 + 8B - A)(3 + 4D - C) - 2(B - A)(D - c)} \]

Corollary 8.4.5 Let us assume that \(u(z) \in K_2^*(n, m, \sigma, \eta, \zeta, A, B, \alpha) \) & \(v(z) \in K_2^*(n, m, \sigma, \eta, \zeta, C, D, \alpha) \), i.e. hereafter it is to be taken as \(u(z) \ast v(z) \in K_2^*(n, m, \sigma, \eta, \zeta, E, F, \alpha) \), where

\[E \leq 1 - 2j_3, \quad F \geq \frac{j_3 + E}{1 - j_3} \]

Where,

\[\dot{j}_3 = \frac{6(1 - \infty)(B - A)(D - C)}{[3 + 2(4 - \infty)B - 2(1 - \infty)A][3 + 4 - \infty)(D - 1 - \infty)C]} \times \frac{1}{[(1 + 3\alpha)\mu + n - 2(B - A)(D - c)(1 - \infty)^2]} \]

Assuming \(\alpha = n = 0, \sigma = \frac{1}{2}, \eta = 1, \zeta = 1 \), and using the reference [128] we will obtain next result.

Corollary 8.4.6 If \(u(z) \in K_2^*(\frac{0,1,1}{2,1,1}, A, B, 0) \) and \(v(z) \in K_2^*(\frac{0,1,1}{2,1,1}, C, D, 0) \). I.e. hereafter it is to be taken as \(u(z) \ast v(z) \in K_2^*(\frac{0,1,1}{2,1,1}, E, F, 0) \), Where,

\[E \leq 1 - 2j_4, \quad F \geq \frac{j_4 + E}{1 - j_4} \]

With

\[\dot{j}_4 = \frac{6(B-A)(D-C)}{(4[3 + 8B - 2A][3 + 4D - C] - 2(B - A)(D - c))}. \]
Theorem 8.4.3 Let us assume that the function
\[u(z) = z - \sum_{k=2}^{\infty} a_{2k} z^{2k} \]
Where, \(a_{2k} \geq 0 \in T_2(n, m, \gamma, \delta, \tau, A, B, \alpha) \) & \(g(z) = z - \sum_{k=2}^{\infty} b_{2k} z^{2k} \)
With \(|b_{2i}| \leq 1, \ i \geq 1 \), i.e. here after it is to be taken as \(u(z) * v(z) \in T(n, m, \gamma, \delta, \tau, A, B, \alpha) \).

Proof By assumption, we have
\[\sum_{k=2}^{\infty} \left[\left(2 + 2(1-\alpha) \right) - 2(1-\alpha) \right] \left[\frac{(1-\gamma+y[1+(2k-1)\lambda])^m}{2(B-A)(1-\alpha)} \right] a_{2k} b_{2k} \leq 1. \]
And \(\therefore |b_{2i}| \leq 1 \ for \ i \geq 1 \), i.e. here after it is to be taken as
\[\sum_{k=2}^{\infty} \left[\frac{(1+2k-1)\alpha \mu (1-\gamma+y[1+(2k-1)\lambda])^m}{2(B-A)(1-\alpha)} \right] a_{2k} b_{2k} \]
That is \(u(z) * v(z) = z - \sum_{k=2}^{\infty} a_{2k} b_{2k} z^{2k} \in T(n, m, \gamma, \delta, \tau, A, B, \alpha) \).
Where,
\[\left(a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta+c)}{\epsilon(\delta+\tau)+q} = \frac{a\mu}{\lambda}, \zeta \geq 0, \tau \geq 0, \right. \\
\left. \delta \geq 0, 0 < \epsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2} \right) \]

Corollary 8.4.7 Let us assume that the function
\[u(z) = z - \sum_{k=2}^{\infty} a_{2k} z^{2k}, \]
Where \(a_{2k} \geq 0 \in S_*(n, \sigma, \eta, \tau, A, B, \alpha) \) and
\[v(z) = z - \sum_{k=2}^{\infty} b_{2k} z^{2k} \]
With \(|b_{2i}| \leq 1, \ i \geq 1 \). I.e. here after it is to be taken as \(u(z) * v(z) \in S^*(n, \sigma, \eta, \tau, A, B, \alpha) \).
By putting \(n = \alpha = 0 \) and using reference [128] we get next corollary.

Corollary 8.4.8 Let us assume that the function
\[u(z) = z - \sum_{k=2}^{\infty} a_{2k} z^{2k}, \]
Where,
\[a_{2k} \geq 0 \in S_2^*(0,0,0,0,A,B,0) \] & \(v(z) = z - \sum_{k=2}^{\infty} b_{2k} z^{2k} \)
With \(|b_{2i}| \leq 1, \ i \geq 1 \). ∴ \(u(z) * v(z) \in S^*(0,0,0,0,A,B,0) \)
Corollary 8.4.9 Let us assume that the function
\[u(z) = z - \sum_{k=2}^{\infty} a_{2k} z^{2k}, \]
Where \(a_{2k} \geq 0 \in K_{2}^{*}(n, m, \sigma, \eta, \zeta, A, B, \alpha) \).
And
\[u(z) = z - \sum_{k=2}^{\infty} b_{2k} z^{2k} \]
With \(|b_{2i}| \leq 1, \ i \geq 1 \). i.e. here after it is to be taken as \(u(z) \ast v(z) \in K(n, m, \sigma, \eta, \zeta, A, B, \alpha) \), by putting \(n = \alpha = 0 \) and \(\sigma = \frac{1}{2}, \eta = \zeta = 1 \) and using reference [128] we get next corollary.

Corollary 8.4.10 Let \(u(z) \in K_{2}^{*} \left(0,1, \frac{1}{2}, 2,1,1, A, B, 0 \right) \).
\[u(z) = z - \sum_{k=2}^{\infty} a_{2k} z^{2k}, \] Where \(a_{2k} \geq 0 \), &
\[v(z) = z - \sum_{k=2}^{\infty} b_{2k} z^{2k} \] Where \(|a_{2i}| \leq 1, \ \forall \ i \geq 1 \).
I.e. here after it is to be taken as \(u(z) \ast v(z) \in K(0,1,1/2,1,1,A,B,0) \).
Where,
\[\left(a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \eta \leq 1, -\frac{\sigma(n+\zeta)}{\epsilon(\delta+\tau)+q} = \frac{a_{\mu}}{\lambda}, \zeta \geq 0, \tau \geq 0, \right. \]
\[\left. \delta \geq 0, 0 < \epsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2} \right). \]

Theorem 8.4.4 Let \(u, v \in T_{2}^{*}(n, m, \gamma, \sigma, \eta, \zeta, A, B, \infty) \), i.e. here after it is to be taken as
\[q(z) = z - \sum_{k=2}^{\infty} \left(a_{2k}^2 + b_{2k}^2 \right) \in T_{2}^{*}(n, m, \gamma, \sigma, \eta, \zeta, A, B, \infty). \]
Here
\[A_{1} \leq 1 - 2j \text{ and } B_{1} \geq \frac{A_{1}+j}{1-j} \]
with
\[j = \frac{[24(1-\infty)(B-A)^2]}{[3+2(4-\infty)B-2(1-\infty)A]^{2}(1+3a\mu)^n[(1-\gamma+\gamma(1+3a\mu)^m]-8(B-A)^2(1-\infty)^2}]. \]

Proof By assumption,
\[\sum_{k=2}^{\infty} \frac{[(2k-1)+2(2k-\infty)B-2(1-\infty)A]x^n(1-\gamma+\gamma x^m)}{2(B-A)(1-\infty)} a_{2k} \leq 1 \]
\[\sum_{k=2}^{\infty} \frac{[(2k-1)+2(2k-\infty)B-2(1-\infty)A]x^n(1-\gamma+\gamma x^m)}{2(B-A)(1-\infty)} b_{2k} \leq 1 \]
Here \(X = 1 + (2k-1)a\mu \), thus
\[
\sum_{k=2}^{\infty} \left[\frac{[(2k-1)+2(2k-\infty)B-2(1-\infty)A]X^n(1-\gamma+yX^m)}{2(B-A)(1-\infty)} \right]^2 a_{2k} \leq 1.
\]
\[
\left(\sum_{k=2}^{\infty} \frac{[(2k-1)+2(2k-\infty)B-2(1-\infty)A]X^n(1-\gamma+yX^m)}{2(B-A)(1-\infty)} \right)^2 b_{2k} \leq 1 \quad (8.4.28)
\]

I. e. here after it is to be taken as we may write
\[
\sum_{k=2}^{\infty} \frac{1}{2} \left[\frac{[(2k-1)+2(2k-\infty)B-2(1-\infty)A]X^n(1-\gamma+yX^m)}{2(B-A)(1-\infty)} \right]^2 (a_{2k}^2 + b_{2k}^2) \leq 1 \quad (8.4.29)
\]

Therefore, the inequality (8.4.29) holds if
\[
\frac{[(2k-1)+2(2k-\infty)B-2(1-\infty)A]X^n(1-\gamma+yX^m)}{(B_1-A_1)(1-\infty)} \leq \frac{1}{2} \left[\frac{[(2k-1)+2(2k-\infty)B-2(1-\infty)A]X^n(1-\gamma+yX^m)}{2(B-A)(1-\infty)} \right]^2 = \frac{\nu^2}{2}.
\]

And by simplification, the last inequality gives
\[
\frac{(B_1-A_1)}{(B_1+1)} \geq \frac{2(2k-1)X^n(1-\gamma+yX^m)}{(1-\alpha)\nu^2-2X^n(1-\gamma+yX^m)} \quad (8.4.30)
\]

the r. h. s. of (8.4.30) decreasing in accordance with increase in \(k\) & for \(k=2\) the following relation,
\[
\frac{(B_1-A_1)}{(B_1+1)} \geq \frac{[24(1-\infty)(B-A)^2]}{[3+2(4-\infty)B-2(1-\infty)A]^2(1+3\alpha\mu)^n[1-\gamma+y(1+3\alpha\mu)^m]-8(B-A)^2(1-\infty)^2]} = j \quad (8.4.31)
\]

Now by fixing \(A_1\) in (8.4.31), we have \(B_1 \geq \frac{A_1+j}{1-j} \& B_1 \leq 1\) give \(A_1 \leq 1 - 2j\).

with \(j\) as given in (8.4.31).

Where,
\[
\begin{align*}
a_{2k} &\geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \alpha \geq \frac{\sigma(\eta+\gamma)}{\varepsilon(\delta+t)+q} = \frac{a\mu}{\lambda}, \eta \geq 0, \tau \geq 0,
\delta &\geq 0, 0 < e \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, \frac{1}{2} \leq B \leq A \leq \frac{1}{2}.
\end{align*}
\]

Corollary 8.4.11 Let \(u, v \in S_2(n, \sigma, \eta, \varsigma, A, B, \infty)\), i. e. here after it is to be taken as
\[
q(z) = z - \sum_{k=2}^{\infty} (a_{2k}^2 + b_{2k}^2)z^{2k} \in S_2(n, \sigma, \eta, \varsigma, A_1, B_1, \infty)
\]

Where \(A_1, B_1 and j_1\) as given in theorem 8.4.4. By putting \(n = \infty = 0\) in Corollary 8.4.11, we have the next corollary using reference [128].
Corollary 8.4.12 Let $u, v \in S_2^*(0,0,0,0,A,B,0)$, i. e. here after it is to be taken as

$$q(z) = z - \sum_{k=2}^{\infty} (a_{2k-2}^2 + b_{2k-2}^2) z^{2k} \in S_2^*(0,0,0,0,A_1,B_1,0).$$

Where A_1 and B_1 as given in theorem 8.4.4 with

$$j_2 = \frac{24(\theta - A)^2}{(3 + 8B - 2A)^2 - 8(\theta - A)^2}.$$

Let the class $T(n, q)$ of functions given by

$$u(z) = z^q - \sum_{k=n+q}^{\infty} a_k z^k$$

where $(n, q \in N, a_k \geq 0)$ (8.4.32)

$u(z)$ will be Holomorphic (an analytic) and Multivalent $u = \{z: |z| < 1\}$. Consider the generalized Ruscheweyh derivative $J_q^{\eta,\epsilon,\delta,\tau} u(z)$ defined as

$$J_q^{\eta,\epsilon,\delta,\tau} u(z) = z^\eta - \sum_{k=n+q}^{\infty} \Omega_q^{\eta,\epsilon,\delta,\tau}(k) a_k z^k$$

(8.4.33)

$$\Omega_q^{\eta,\epsilon,\delta,\tau} u(z) = \frac{\Gamma(k+q+2)\Gamma(k+q+1)\Gamma(k+q+2+\lambda-q\mu)\Gamma(k+q+2+\gamma-q\mu)\Gamma(k+q+2+\gamma-q\mu)\Gamma(k+q+2+\gamma-q\mu)}{\Gamma(k+q+1)\Gamma(k+q+2+\lambda-q\mu)\Gamma(k+q+2+\gamma-q\mu)\Gamma(k+q+2+\gamma-q\mu)\Gamma(k+q+2+\gamma-q\mu)}$$

(8.4.34)

$v, \epsilon, \delta, \tau \in R, \sigma = \epsilon, \eta = \delta, \zeta = \tau$ and $p = v = 1$.

We have Ruscheweyh derivative to univalent (or schl i. e. a single valued function) given as

$$AB(\sigma, \eta, \epsilon, \delta, \tau, \gamma, \alpha, p, n),$$

containing $u(z)$ given as (8.4.32) satisfying the condition

$$Re \left[\frac{J_q^{\eta,\epsilon,\delta,\tau} u(z)}{(1-\gamma)z^\eta + \gamma z^\eta (J_q^{\eta,\epsilon,\delta,\tau} u(z))^\eta + \gamma (J_q^{\eta,\epsilon,\delta,\tau} u(z))^\eta} \right] > \alpha$$

(8.4.35)

And $J_q^{\eta,\epsilon,\delta,\tau} f(z)$ as defined in (8.4.33). Also Let

$$f_i(z) = z^q - \sum_{k=n+q}^{\infty} a_k z^k, \ (i = 1, 2).$$

F Belonging to $T(n, q)$ (an analytic) in U. I. e. here after it is to be taken as

$$(f_1 * f_2 * \cdots * f_n)(z) = z^q - \sum_{k=n+q}^{\infty} \prod_{i=1}^{n} a_{k,i} z^k$$

(8.4.36)

$$\prod_{i=1}^{n} a_{k,i} = a_{k,1} a_{k,2} \cdots a_{k,n}, \ (\square \in N)$$

Where,

$$\left(\begin{array}{c}
a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta+\zeta)}{\epsilon(\delta+\tau)+q} = \frac{am}{\lambda}, \zeta \geq \delta \geq 0, \\
\delta \geq 0, 0 < \epsilon \leq \frac{1}{2} \leq 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2} - \frac{1}{2} \leq B < A \leq \frac{1}{2}
\end{array} \right)$$

Theorem 8.4.5 Let us assume that $u(z) \in T(n, q) \Rightarrow$
If \(u(z) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n) \) if and only if
\[
\Sigma_{k=n+q}^{\infty} \left\{ 1 - \alpha [(1 - \gamma)k(k - 1) + \gamma k + 1] \Omega_q^{\sigma, \eta, \zeta, \epsilon, \delta, \tau}(k) a_k \right\} < 1 - \alpha \left([(1 - \gamma)q(q - 1) + \gamma q + 1] \right)
\]
(8.4.37)
\[0 \leq \alpha < \frac{1}{(1 - \gamma)q(q - 1) + \gamma q + 1}\] and \(\Omega_q^{\sigma, \eta, \zeta, \epsilon, \delta, \tau}(k) \)

as defined in (8.4.34). The result holds true.

Proof If \(u(z) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n) \), i.e. here after it is to be taken as
\[
Re \left\{ \frac{\int_{q}^{\sigma, \eta, \zeta, \epsilon, \delta, \tau u(z)} \left[(1 - \gamma)z^2 \left[\frac{\int_{q}^{\sigma, \eta, \zeta, \epsilon, \delta, \tau u(z)} \right] + \alpha z \left[\frac{\int_{q}^{\sigma, \eta, \zeta, \epsilon, \delta, \tau u(z)} \right] \right] \right] \right\} > \alpha \quad (z \in u).
\]

\[
\left| (1 - \alpha) \Omega_q^{\sigma, \eta, \zeta, \epsilon, \delta, \tau} u(z) - (1 - \gamma)z^2 \alpha \left[\frac{\int_{q}^{\sigma, \eta, \zeta, \epsilon, \delta, \tau u(z)} \right] \right| > 0.
\]

\[
\therefore \quad \Omega_q^{\sigma, \eta, \zeta, \epsilon, \delta, \tau} u(z),
\]

\[|z|^q \left\{ 1 - \alpha \left([(1 - \gamma)q(q - 1) + \gamma q + 1] \right) \right\} = 0.
\]

Letting \(z \to 1^- \) on real values yields
\[
\Sigma_{k=n+q}^{\infty} \left\{ 1 - \alpha [(1 - \gamma)k(k - 1) + \gamma k + 1] \Omega_q^{\sigma, \eta, \zeta, \epsilon, \delta, \tau}(k) a_k \right\}
\]
\[< 1 - \alpha \left([(1 - \gamma)q(q - 1) + \gamma q + 1] \right)\]

Where
\[
\Omega_q^{\sigma, \eta, \zeta, \epsilon, \delta, \tau}(k) = \frac{\Gamma((k-2q+1)+\lambda)\Gamma(v+2+\lambda-a\mu)\Gamma(k+v-q+2)}{\Gamma(k+q+1)\Gamma(k+v-2q+2+\lambda-a\mu)\Gamma(v+2)\Gamma(1+a\mu)}
\]

Conversely, suppose (8.4.37) holds true, i.e. here after it is to be taken as
\[
W = \frac{\int_{q}^{\sigma, \eta, \zeta, \epsilon, \delta, \tau u(z)} \left[(1 - \gamma)z^2 \left[\frac{\int_{q}^{\sigma, \eta, \zeta, \epsilon, \delta, \tau u(z)} \right] + \alpha z \left[\frac{\int_{q}^{\sigma, \eta, \zeta, \epsilon, \delta, \tau u(z)} \right] \right] \right] \right\} > \alpha \quad (z \in u).
\]

Where,
\[
\left(\begin{array}{c}
a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta+\zeta)}{\epsilon(\delta+\tau)+\eta} = \frac{a\mu}{\lambda}, \zeta \geq 0, \tau \geq 0, \\
\delta \geq 0, 0 < \epsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}
\end{array}\right)
\]
Corollary 8.4.13 Let \(u(z) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n) \), i.e. hereafter it is to be taken as

\[
a_k \leq \frac{1-\alpha[(1-\gamma)q(q-1)+yq+1]}{(1-\alpha[(1-\gamma)(n+q)(n+q+1)+y(n+q+1)+1])\omega_q^\sigma_{\eta,\zeta,\epsilon,\delta,\tau}(n+q)}, \quad k \geq n + q \quad (8.4.38)
\]

Also consider the class \(AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n) \) s.t.

\[
zf^r(z) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n).
\]

Theorem 8.4.6 The function \(u \in ABS(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n) \) if & only if

\[
\sum_{k=n+q}^{\infty} k(1-\alpha (\sigma(\eta + \zeta) + 1) - \alpha (k-1) (2 - \alpha + (k-2) [(1 - \alpha\mu)])
\times \omega_q^\sigma_{\eta,\zeta,\epsilon,\delta,\tau}(k)a_k z^k
\leq q[1 - \alpha(1 - \alpha\mu)(p - 1) + \alpha\mu q + 1].
\]

Where it is obviously,

\[
0 \leq \alpha < \frac{1}{\alpha((1-\alpha\mu)q(q-1)+\alpha\mu q+1)}, \quad 0 \leq \alpha \mu < \frac{1}{2}.
\]

Where it is obviously,

\[
\begin{aligned}
a_{2k} &\geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta + \zeta)}{\epsilon(\delta + \tau)+q} = \frac{\alpha\mu}{\lambda}, \quad \square \geq 0, \tau \geq 0, \\
\delta &\geq 0, 0 \leq \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}.
\end{aligned}
\]

And \(\omega_q^\sigma_{\eta,\zeta,\epsilon,\delta,\tau}(k) \) as defined in (8.4.34).

Corollary 8.4.14 Let \(u(z) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n) \), i.e. hereafter it is to be taken as

\[
a_k \leq \frac{q[1-\alpha((1-\gamma)q(q-1)+yq+1)]}{(n+q)[1-\alpha((1-\alpha\mu)(n+q)(n+q+1)+\alpha\mu(n+q+1))]}\omega_q^\sigma_{\eta,\zeta,\epsilon,\delta,\tau}(n+q)
\]

\[
\leq \frac{q[z^2-q+2]}{(n+q)[2-((q+n)^2+2)]}\omega_q^\sigma_{\eta,\zeta,\epsilon,\delta,\tau}(n+q).
\]

Where,

\[
\begin{aligned}
a_{2k} &\geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta + \zeta)}{\epsilon(\delta + \tau)+q} = \frac{\alpha\mu}{\lambda}, \xi \geq 0, \tau \geq 0, \\
\delta &\geq 0, 0 \leq \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}.
\end{aligned}
\]
Theorem 8.4.7 Let \(u \in AB(\sigma, \eta, \varsigma, \epsilon, \delta, \tau, \gamma, \alpha, q, n) \) i.e. here after it is to be taken as

\[
|z|^q - \frac{[1-\alpha[1-\gamma](q-1)+\gamma q+1]}{1-\alpha[(1-\gamma)(q+1)+\gamma(q+1)+1]} z^{n+q}
\]

\[
\leq \left| J_{q}^{\sigma, \eta, \varsigma, \epsilon, \delta, \tau} u(z) \right| \leq |z|^q + \frac{[1-\alpha[1-\gamma](q-1)+\gamma q+1]}{1-\alpha[(1-\gamma)(q+1)+\gamma(q+1)+1]} z^{n+q}
\]

(8.4.39)

\[\therefore q|z|^{q-1} - \frac{(q+n)[1-\alpha[1-\gamma](q-1)+\gamma q+1]}{1-\alpha[(1-\gamma)(q+1)+\gamma(q+1)+1]} |z|^{n+p-1}
\]

\[\leq \left| J_{q}^{\sigma, \eta, \varsigma, \epsilon, \delta, \tau} u(z) \right| \leq q|z|^{q-1} + \frac{(q+n)[1-\alpha[1-\gamma](q-1)+\gamma q+1]}{1-\alpha[(1-\gamma)(q+1)+\gamma(q+1)+1]} |z|^{n+q-1}
\]

(8.4.40)

Where,

\[v, \epsilon, \delta, \tau \in R, \ z \in u. \]

& \[\Omega_{q}^{\sigma, \eta, \varsigma, \epsilon, \delta, \tau} (n + q) = \frac{\Gamma(n+1+\lambda-q)\Gamma(n+v+2+\lambda-q-\alpha \mu)\Gamma(n+v+2)}{\Gamma(n+1)\Gamma(n+v+2+\lambda-q-\alpha \mu)\Gamma(n+v+2)\Gamma(1+\lambda-q)}. \]

Proof For \(u \in AB(\sigma, \eta, \varsigma, \epsilon, \delta, \tau, \gamma, \alpha, q, n) \), we have

\[\sum_{k=n+q}^{\infty} a_{k} \Omega_{q}^{\sigma, \eta, \varsigma, \epsilon, \delta, \tau} (k) \]

\[\leq \frac{[1-\alpha[1-\gamma](q-1)+\gamma q+1]}{1-\alpha[(1-\gamma)(q+1)+\gamma(q+1)+1]} |z|^q + \sum_{k=n+q}^{\infty} a_{k} \Omega_{q}^{\sigma, \eta, \varsigma, \epsilon, \delta, \tau} (k) \]

\[\leq \frac{[1-\alpha[1-\gamma](q-1)+\gamma q+1]}{1-[(1-\gamma)(n+q+1)+\gamma(n+q)+1]} |z|^n+q \]

And

\[\left| J_{q}^{\sigma, \eta, \varsigma, \epsilon, \delta, \tau} u(z) \right| \]
\[\geq |z|^q - \frac{(1-\xi[(1-\gamma)q(q-1)+\gamma q+1])}{1+\xi((1-\gamma)(n+q)(n+q-1)+\gamma(n+q)+1)} |z|^{n+q}. \]

Where it is obviously for all,
\[
\left(a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(n+\xi)}{\lambda}, \xi \geq 0, \tau \geq 0, \delta \geq 0, 0 < \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2} \right).
\]

Similarly, we can prove the relation (8.4.40).

Theorem 8.4.8 Let us assume that
\[f_i(z) \in AB(\square, \eta, \zeta, \varepsilon, \delta, \gamma, \alpha, q, n) \]
\[\therefore (f_1 * f_2 * \cdots * f_l)(z) \in AB(\sigma, \eta, \zeta, \varepsilon, \delta, \gamma, \alpha, q, n) \]
And
\[0 \leq \xi < \frac{1}{(1-\gamma)q(q-1)+\gamma q+1} - \frac{n}{T_1(n+q, I)}. \]

Where it is obviously,
\[f_i(z) = z^q - \sum_{k=n+q}^{\infty} a_{k,i} z^k \quad (i = 1, 2, \cdots, \ell \in N). \]
\[T_1(n + q, \ell) = \prod_{i=1}^{\ell} \frac{1-\alpha_i[(1-\gamma)q(n+q-1)+\gamma(n+q)+1]}{[1-\alpha_i((1-\gamma)q(q-1)+\gamma q+1)]} \]
\[\Omega_{q}^{\sigma, \eta, \zeta, \varepsilon, \delta, \gamma, \tau}(n + q) - 1 \quad \text{For } 0 \leq \alpha_i < \frac{1}{(1-\gamma)q(q-1)+\gamma q+1}. \]

Proof Result is verified for \(\ell = 1 \) & \(\ell = 2 \)
\[
\sum_{k=n+q}^{\infty} \frac{(1-\alpha_1[(1-\gamma)q(k-1)+\gamma k+1])\Omega_{q}^{\sigma, \eta, \zeta, \varepsilon, \delta, \gamma, \tau}(k)}{1-\alpha_1[(1-\gamma)q(q-1)+\gamma q+1]} a_{k,1} \leq 1. \]
\[
\sum_{k=n+p}^{\infty} \frac{(1-\alpha_2[(1-\gamma)q(k-1)+\gamma k+1])\Omega_{q}^{\sigma, \eta, \zeta, \varepsilon, \delta, \gamma, \tau}(k)}{1-\alpha_2[(1-\gamma)q(q-1)+\gamma q+1]} a_{k,2} \leq 1
\]
By inequality given by Cauchy- Schwarz we get the following result
\[
\sum_{k=n+p}^{\infty} \left(\prod_{i=1}^{\ell_2} \frac{(1-\alpha_i[(1-\gamma)q(k-1)+\gamma k+1])}{1-\alpha_i[(1-\gamma)q(q-1)+\gamma q+1]} a_{k,i} \right)^2 \Omega_{p}^{\sigma, \eta, \zeta, \varepsilon, \delta, \gamma, \tau}(k) \leq 1.
\]
We will try to obtain \(\xi \) so that
\[
\sum_{k=n+q}^{\infty} \frac{(1-\xi[(1-\gamma)q(k-1)+\gamma k+1])\Omega_{q}^{\sigma, \eta, \zeta, \varepsilon, \delta, \gamma, \tau}(k)}{1-\xi[(1-\gamma)q(q-1)+\gamma q+1]} a_{k,1} a_{k,2} \leq 1
\]
\[\text{S. t. } \frac{(1-\xi[(1-\gamma)q(k-1)+\gamma k+1])}{(1-\xi[(1-\gamma)q(q-1)+\gamma q+1])} \sqrt{a_{k,1} a_{k,2}} \]
Consequently, we will obtain ξ so that
\[
\frac{[1-\xi[(1-\gamma)k(k-1)+\gamma k+1]]}{[1-\xi[(1-\gamma)q(q-1)+\gamma q+1]]} \leq \Omega_q^{\sigma,\eta,\zeta,\epsilon,\delta,\tau} \prod_{i=1}^2 \frac{[1-\alpha_i[(1-\gamma)k(k-1)+\gamma k+1]]}{[1-\alpha_i[(1-\gamma)q(q-1)+\gamma q+1]]}.
\]
Thus \((f_1 * f_2)(z) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n),\) for
\[
0 < \xi \leq \frac{1}{(1-\gamma)q(q-1)+\gamma q+1} - \frac{n}{T_2(n+q)}, \text{ where}
\]
\[
T_2(k) = \Omega_q^{\sigma,\eta,\zeta,\epsilon,\delta,\tau} \prod_{i=1}^2 \frac{1-\alpha_i[(1-\gamma)k(k-1)+\gamma k+1]}{1-\alpha_i[(1-\gamma)q(q-1)+\gamma q+1]} - 1.
\]
So for $k \geq n + q$ we get
\[
0 < \xi \leq \frac{1}{(1-\gamma)q(q-1)+\gamma q+1} - \frac{n}{T_1(n+q)},
\]
\[
= f_q^{\sigma,\eta,\zeta,\epsilon,\delta,\tau}(n + q) \prod_{i=1}^2 \frac{1-\alpha_i[(1-\gamma)q(q-1)+\gamma q+1]}{1-\alpha_i[(1-\gamma)q(q-1)+\gamma q+1]} - 1.
\]

\[
\forall p \in N. \text{ I.e. here after it is to be taken as we must show that } (f_1 * f_2 * \cdots * f_\ell)(z) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n),
\]
Where it is obvious for, \(0 < \xi \leq \frac{1}{(1-\gamma)q(q-1)+\gamma q+1} - \frac{n}{M_1(n+q, \ell+1)}\)
And
\[
M_1(n+q, \ell+1) = \left\{ 1 - \xi[(1-\gamma)(n+p)(n+q-1) + \gamma(n+q) + 1] \right\}
\times \left\{ 1 - \xi[(1-\gamma)q(q-1) + \gamma q+1] \right\} - 1.
\]
I.e. here after it is to be taken
\[
(f_1 * f_2 * \cdots * f_\ell)(z) = z^q - A_{n+q} z^{n+q}.
\]
Where it is obvious for,
\[
A_{n+q} = \prod_{i=1}^\ell \frac{[1-\alpha_i[(1-\gamma)q(q-1)+\gamma q+1]]}{1-\alpha_i[(1-\gamma)(n+q)(n+q-1) + \gamma(n+q) + 1]} \frac{1}{\alpha_i^{\sigma,\eta,\zeta,\epsilon,\delta,\tau}(n+q)} - 1
\]
\[
0 \leq \alpha_i < \frac{1}{(1-\gamma)q(q-1)+\gamma q+1}.
\]
Hence theorem is proved. Moreover
\[
f_i(z)
\]
\[z^n - \frac{(1-\alpha_i[(1-x)q(q-1)+yq+1])}{(1-\alpha_i[(1-x)(n+q)(n+q-1)+y(n+q)+1])q(n+p)} z^{n+p}, \]

Similarly we can prove the result for \(AB \in S(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \xi, q, n) \) in next Theorem.

Where,
\[
\left(\begin{array}{c}
\alpha_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta+\zeta)}{\epsilon(\delta+\tau)+q} = \frac{a_{\mu}}{\lambda}, \zeta \geq 0, \tau \geq 0,
\delta \geq 0, 0 < \epsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}.
\end{array} \right)
\]

Theorem 8.4.9 If \(f_i(z) \in ABS(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha_i, q, n) \) for each \((i = 1, 2, \ldots, \ell) \)
then, \((f_1 \ast f_2 \ast \ldots \ast f_\ell)(z) \in ABS(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n)\)
\[
\therefore 0 < \beta \leq \frac{1}{(1-\alpha_{q})q(q-1)+a_{q}q+1} - \frac{n}{r_{2}(n+q, \ell)}
\]
\[
T_2(n + q, \ell) = \prod_{i=1}^{\ell} \frac{(n+q)\sigma_{q}^{\eta, \zeta, \epsilon, \delta, \tau} (n+q)}{q(1-\alpha_q[(1-x)q(q-1)+yq+1])}
\]
\[
\times \{1 - \alpha_i[(1-x)(n+q)(n+q-1)+y(n+q)+1]\} - 1.
\]
I. e. here after it is to be taken as for the functions denoted by \(f_i(z) \forall (i = 1, 2, \ldots, \ell) \) where it is obviously,
\[
f_i(z) = z^n - \frac{(1-\alpha_i[(1-x)q(q-1)+yq+1])}{(1-\alpha_i[(1-x)(n+q)(n+q-1)+y(n+q)+1])q(n+p)} z^{n+p}.
\]
Where,
\[
\left(\begin{array}{c}
\alpha_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta+\zeta)}{\epsilon(\delta+\tau)+q} = \frac{a_{\mu}}{\lambda}, \zeta \geq 0, \tau \geq 0,
\delta \geq 0, 0 < \epsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}.
\end{array} \right)
\]
Put \(\alpha_i = \infty \forall (i = 1, 2, \ldots, \ell) \) in Them. 8.4.8, we get

Corollary 8.4.15 If \(f_i(z) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n) \forall (i = 1, 2, \ldots, \ell \in N)\)
\[
\therefore (f_1 \ast f_2 \ast \ldots \ast f_\ell)(z) \in ABS(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \beta, q, n).
\]
And
\[
\beta = \frac{1}{(1-\gamma)q(q-1)+yq+1}
\]
\[
-\frac{n}{(1-\alpha(1-x)(n+q)(n+q-1)+y(n+q)+1)]q^{\sigma_{q}^{\eta, \zeta, \epsilon, \delta, \tau} (n+q)} - 1
\]
Where it is obviously,

\[0 \leq \alpha < \frac{1}{(1-\gamma)(q(q-1)+\gamma q+1)}. \]

I. e. hereafter it is to be taken as \(f_i(z) \), \(\forall (i = 1, 2, \ldots, \ell \in N) \) is

\[f_i(z) = \frac{z^q - \frac{(1-\alpha)(1-\gamma)(q(q-1)+\gamma q+1))}{(1-\alpha)((1-\gamma)(q(q-1)+\gamma q+1))\Omega_q^{\gamma, \eta, \zeta, \varepsilon, \delta, \tau}(n+q)}}{z^{n+q}}. \]

Where,

\[\begin{cases} a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta, \zeta)}{\varepsilon(\delta, \tau) + q} = \frac{a \mu \lambda}{\eta, \xi, \zeta, \delta, \tau} \geq 0, \tau \geq 0, \\ \delta \geq 0, 0 < \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2} \end{cases} \]

\[\forall \alpha_i = \alpha \text{ for } (i = 1, 2, \ldots, \ell). \]

Corollary 8.4.16 If \(f_i(z) \in AB(\sigma, \eta, \xi, \varepsilon, \delta, \gamma, \alpha, q, n) \) i. e. hereafter it is to be taken as for \((i = 1, 2, \ldots, \ell \in N) \) \(f_1(z) \ast f_2 \ast \ldots \ast f_\ell(z) \in ABS(\sigma, \eta, \xi, \varepsilon, \delta, \gamma, \beta, \beta, q, n) \)

\[\therefore \beta = \frac{1}{(1-\gamma)(q(q-1)+\gamma q+1)} \]

\[- \frac{n}{(n+q)((1-\alpha)((1-\gamma)(q(q-1)+\gamma q+1))\Omega_q^{\gamma, \eta, \zeta, \varepsilon, \delta, \tau}(n+q))}. \]

Where,

\[\begin{cases} a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta, \zeta)}{\varepsilon(\delta, \tau) + q} = \frac{a \mu \lambda}{\eta, \xi, \zeta, \delta, \tau} \geq 0, \tau \geq 0, \\ \delta \geq 0, 0 < \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2} \end{cases} \]

Theorem 8.4.10 Let \(f_i(z) \) where \((i = 1, 2, \ldots, \ell \in N) \) is defined as

\[f_i(z) = \frac{1}{z^q} - \sum_{k=n+q}^{\infty} a_{k,i} \frac{1}{z^k} \in ABS(\sigma, \xi, \varepsilon, \delta, \tau, \gamma, \alpha, q, n). \]

Where \((i = 1, 2, \ldots, \ell \in N) \) i. e. hereafter it is to be taken as arithmetic mean of \(f_i \) \((i = 1, 2, \ldots, \ell \in N) \) is defined as given as follows

\[h(z) = \frac{1}{\ell} \sum_{i=1}^{\infty} f_i(z), \]

It is also in \(AB(\sigma, \eta, \xi, \varepsilon, \delta, \gamma, \alpha, q, n) \) \((i = 1, 2, \ldots, \ell \in N) \).
Proof By definition of $h(z)$

\[\begin{align*}
\therefore \ h(z) &= \frac{1}{z} \sum_{i=1}^{\infty} \left(\frac{1}{z^q} - \sum_{k=n+q}^{\infty} a_{k,i} \cdot \frac{1}{z^{k-q}} \right) \\
&= \frac{1}{z^q} - \sum_{k=n+q}^{\infty} \left(\frac{1}{z} \sum_{i=1}^{\infty} a_{k,i} \right) \cdot \frac{1}{z^{k-q}}.
\end{align*} \]

Using Theorem 8.4.5,

\[\begin{align*}
\sum_{k=n+q}^{\infty} \left\{ 1-\alpha \left[(1-\gamma)k(k-1) + \gamma k + 1 \right] \Omega_{q}^{\sigma,\eta,\zeta,\epsilon,\delta,\tau} (k) \right\} a_{k,i} \\
= \frac{1}{z} \sum_{i=1}^{\infty} \left(\sum_{k=n+q}^{\infty} \left\{ 1-\alpha \left[(1-\gamma)k(k-1) + \gamma k + 1 \right] \Omega_{q}^{\sigma,\eta,\zeta,\epsilon,\delta,\tau} (k) \right\} a_{k,i} \\
\leq \frac{1}{z} \sum_{i=1}^{\infty} (1-\alpha) \left[(1-\gamma)q(q-1) + \gamma q + 1 \right].
\end{align*} \]

I.e. here after it is to be taken as we obtain $h(z) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n)$.

Where,

\[\begin{align*}
\left(a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\gamma+\epsilon)}{\epsilon(\delta+\tau)+\epsilon} = \frac{a_{\mu}}{\lambda}, \zeta \geq 0, \tau \geq 0, \right) \\
\left(\gamma \geq 0, 0 < \epsilon \leq \frac{1}{z}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{z}, -\frac{1}{z} \leq B < A \leq \frac{1}{z} \right).
\end{align*} \]

Theorem 8.4.11 Let us assume that $u(z) \& v(z) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n)$

\[\therefore \ h(z) = tu(z) + (1-t)g(z), \ 0 \leq t \geq 1. \]

where

\[(f_1 * f_2 * \ldots \ * f_l) \in AB(\sigma, \eta, \zeta, \epsilon, \delta, \tau, \gamma, \alpha, q, n). \]

Proof By definition of $h(z)$

\[h(z) = \frac{1}{z} - \sum_{k=n+q}^{\infty} \left[ta_{k} + (1-t)b_{k} \right] \cdot \frac{1}{z^{k-q}}, \]

Where it is obvious,

\[u(z) = \frac{1}{z} - \sum_{k=n+q}^{\infty} a_{k} \cdot \frac{1}{z^{k-q}}, \]

And

\[v(z) = \frac{1}{z} - \sum_{k=n+q}^{\infty} b_{k} \cdot \frac{1}{z^{k-q}}, \]

\[(a_{k}, b_{k} \geq 0). \]

Using theorem 8.4.5

\[\begin{align*}
\sum_{k=n+q}^{\infty} \left\{ 1-\alpha \left[(1-\gamma)k(k-1) + \gamma k + 1 \right] \Omega_{q}^{\sigma,\eta,\zeta,\epsilon,\delta,\tau} (k) \right\} ta_{k} + (1-t)b_{k} \\
= t \sum_{k=n+q}^{\infty} \left\{ 1-\alpha \left[(1-\gamma)k(k-1) + \gamma k + 1 \right] \Omega_{q}^{\sigma,\eta,\zeta,\epsilon,\delta,\tau} (k) \right\} a_{k} \\
+ (1-t) \sum_{k=n+q}^{\infty} \left\{ 1-\alpha \left[(1-\gamma)k(k-1) + \gamma k + 1 \right] \Omega_{q}^{\sigma,\eta,\zeta,\epsilon,\delta,\tau} (k) \right\} b_{k} \leq 1.
\end{align*} \]
Where,
\[
\left(a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(n+\zeta)}{\mu} = \frac{\sigma\eta}{\tau}, \zeta \geq 0, \tau \geq 0, \right)
\]
\[
\delta \geq 0, 0 < \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}.
\]
I. e. here after it is to be taken as \(h(z) \in AB(\sigma, \eta, \zeta, \varepsilon, \delta, \tau, \gamma, \alpha, q, n)\).

Letting
\[
P_{\zeta}^q(z) = \frac{1}{z^q} - \sum_{k=n+q}^{\infty} \frac{\Gamma(q+\zeta+k)\Gamma(q+\zeta+k)}{\Gamma(q+\zeta+k)} a_k \frac{1}{z^k}
\]
Where, \(q \geq 0, \zeta > -1\), by referring the reference \([19]\), obtained the thm 8.4.12.

Theorem 8.4.12 Let \(f \in AB(\sigma, \eta, \zeta, \varepsilon, \delta, \tau, \gamma, \alpha, q, n)\) be defined by \((8.4.32)\) and \(q \geq 0, \zeta > -1\) i. e. here after it is to be taken as \(P_{\zeta}^q(z)\) defined above also contained in \(AB(\sigma, \eta, \zeta, \varepsilon, \delta, \tau, \gamma, \alpha, q, n)\).

Proof Thm 8.4.5 gives,
\[
\sum_{k=n+q}^{\infty} \frac{1-\alpha[(1-\gamma)k+1]}{1-\alpha[(1-\gamma)q+1]} \times \Omega_q^{\sigma, \eta, \zeta, \varepsilon, \delta, \tau}(k) \frac{\Gamma(q+\zeta+k)\Gamma(q+\zeta+k)}{\Gamma(q+\zeta+k)} a_k
\]
\[
\leq \sum_{k=n+p}^{\infty} \frac{1-\alpha[(1-\gamma)k+1]}{1-\alpha[(1-\gamma)q+1+\gamma k+1]} \times \Omega_q^{\sigma, \eta, \zeta, \varepsilon, \delta, \tau}(k) a_k \leq 1.
\]
Then for \(k \geq n+p, P_{\zeta}^q(z) \in AB(\sigma, \eta, \zeta, \varepsilon, \delta, \tau, \gamma, \alpha, q, n)\).

Where,
\[
\left(a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(n+\zeta)}{\mu} = \frac{\sigma\eta}{\tau}, \zeta \geq 0, \tau \geq 0, \right)
\]
\[
\delta \geq 0, 0 < \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}.
\]

Theorem 8.4.13 Let \(P_{\zeta}^q(z)\) be defined, having Taylor series expansion like,
\[
P_{\zeta}^q(z) = \frac{1}{z^q} - \sum_{k=n+q}^{\infty} \frac{\Gamma(q+\zeta+k)\Gamma(q+\zeta+k)}{\Gamma(q+\zeta+k)} a_k \frac{1}{z^k}.
\]
I. e. here after it is to be taken as \(F_\zeta^q(z) \) is a star like Holomorphic (an analytic) function of order \(\beta \) in

\[
|z| \leq R_1(\sigma, \eta, \zeta, \varepsilon, \delta, \gamma, \alpha, \beta, q, n) =
\inf_{k \geq n+q} \left[\frac{(q-\beta)\Gamma(q+\xi+k)\Gamma(\zeta+q)}{(k-\beta)\Gamma(\xi+k)\Gamma(q+\zeta+q)} \frac{1 - \alpha[(1-\gamma)k(k-1)+\gamma k+1]}{1 - \alpha[(1-\gamma)q(q-1)+\gamma q+1]} \frac{1}{k-p} \right]
\times \left[\Omega_q^{\sigma, \eta, \zeta, \varepsilon, \delta, \gamma}(k) \right]^{1-k-q}
\]

Where,

\[
\begin{align*}
&a_{2k} \geq 0, n \geq 0, m \geq 0, 0 \leq \gamma \leq 1, \frac{\sigma(\eta+\zeta)}{\varepsilon(\delta+\gamma)} = \frac{a\mu}{\lambda}, \zeta \geq 0, \tau \geq 0, \\
&\delta \geq 0, 0 < \varepsilon \leq \frac{1}{2}, 0 \leq \alpha < 1, \eta \geq 0, 0 < \sigma \leq \frac{1}{2}, -\frac{1}{2} \leq B < A \leq \frac{1}{2}.
\end{align*}
\]

Proof We have to show that

\[
|z| \leq (q-\beta)\Gamma(q+\xi+k)\Gamma(\zeta+q) \frac{1 - \alpha[(1-\gamma)k(k-1)+\gamma k+1]}{1 - \alpha[(1-\gamma)q(q-1)+\gamma q+1]} \Omega_q^{\sigma, \eta, \zeta, \varepsilon, \delta, \gamma}(k).
\]

\[
\therefore |z|^{k-q} \leq \frac{(q-\beta)\Gamma(q+\xi+k)\Gamma(\zeta+q)}{(k-\beta)\Gamma(\xi+k)\Gamma(q+\zeta+q)} \frac{1 - \alpha[(1-\gamma)k(k-1)+\gamma k+1]}{1 - \alpha[(1-\gamma)q(q-1)+\gamma q+1]} \Omega_q^{\sigma, \eta, \zeta, \varepsilon, \delta, \gamma}(k).
\]

Hence theorem proved.