TABLE OF CONTENTS

DECLARATION BY THE SCHOLAR
SUPERVISOR’S CERTIFICATE
ACKNOWLEDGEMENT
ABSTRACT
LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS
LIST OF FIGURES
LIST OF TABLES

CHAPTER 1
INTRODUCTION 3

CHAPTER 2
REVIEW OF LITERATURE 5
 2.1. VIRUS TAXONOMY 7
 2.2. EPIDEMIOLOGICAL OUTLOOK 7
 2.3. VIRAL INFECTION 8
 2.4. ARTHROPOD VECTOR 9
 2.5. VIRION STRUCTURE AND GEMONE ORGANIZATION 9
 2.6. VIRUS REPLICATION CYCLE 10
 2.6.1. ADSORPTION 11
 2.6.2. ENTRY AND UNCOATING 12
 2.6.3. TRANSCRIPTION 13
 2.6.4. REPLICATION 14
 2.6.5. ASSEMBLY AND BUDDING 14
2.7. VIRAL PROTEINS
2.7.1. NUCLEOCAPSID PROTEIN (N)
2.7.2. PHOSPHOPROTEIN (P)
2.7.3. MATRIX PROTEIN (M)
2.7.4. GLYCOPROTEIN (G)
2.7.5. LARGE PROTEIN (L)

2.8. IMPORTANCE OF STUDYING VIRAL-HOST INTERACTIONS

2.9. METHODS FOR DETECTION OF VIRAL-HOST PROTEIN-PROTEIN INTERACTIONS
2.9.1. YEAST TWO-HYBRID SYSTEM
2.9.2. DETECTION OF PROTEIN INTERACTIONS USING FLUORESCENCE BASED METHODS
2.9.3. GST PULLDOWN ASSAY
2.9.4. CO-IMMUNOPRECIPITATION
2.9.5. TANDEM AFFINITY PURIFICATION (TAP) METHOD
2.9.6. PROTEIN MICROARRAY
2.9.7. PHAGE DISPLAY
2.9.8. IN-SILICO PREDICTION AND VALIDATION OF PROTEIN-PROTEIN INTERACTIONS

2.10. RATIONAL OF THE PRESENT STUDY
2.11. OBJECTIVES OF THE PRESENT STUDY

CHAPTER 3
MATERIALS AND METHODS
3.1. IN-SILICO METHODS
3.1.1. COMPUTATIONAL MODELING OF CHANDIPURA VIRUS PROTEIN STRUCTURES

3.1.2. IDENTIFICATION OF STRUCTURALLY SIMILAR PROTEINS AMONG CHANDIPURA VIRUS AND ITS HOSTS
3.1.3. PREDICTION OF CHANDIPURA VIRUS-HOST PROTEIN INTERACTIONS

3.1.4. GENE ONTOLOGY AND INTERACTION VALIDATION

3.2. MOLECULAR METHODS

3.2.1. POLYMERASE CHAIN REACTION (PCR)
 3.2.1.1. GENE AMPLIFICATION BY PCR FOR CLONING
 3.2.1.2. COLONY PCR SCREENING

3.2.2. DNA AGAROSE GEL ELECTROPHORESIS

3.2.3. PURIFICATION OF AMPLIFIED PCR PRODUCTS

3.2.4. RESTRICTION ENDONUCLEASE DIGESTION
 3.2.4.1. DOUBLE DIGESTION WITH RESTRICTION ENDONUCLEASES
 3.2.4.2. DIGESTION WITH Bsa I ENZYME

3.2.5. DE-PHOSPHORYLATION USING CALF INTESTINAL ALKALINE PHOSPHATASE (CIP)

3.2.6. T4 DNA POLYMERASE REACTION

3.2.7. LIGATION REACTION

3.3. YEAST TWO-HYBRID SYSTEM

3.3.1. YEAST STRAINS

3.3.2. YEAST EXPRESSION PLASMID

3.3.3. CONTROL VECTORS
 3.3.3.1. POSITIVE CONTROL
 3.3.3.2. NEGATIVE CONTROL

3.3.4. PREPARATION OF YEAST COMPETENT CELLS

3.3.5. LITHIUM ACETATE TRANSFORMATION OF YEAST

3.3.6. PREPARATION OF YEAST PROTEIN EXTRACTS

3.3.7. AUTOACTIVATION ANALYSIS

3.3.8. YEAST TWO-HYBRID LIBRARY SCREENING

3.3.9. YEAST COLONY PCR AND ELIMINATION OF MULTIPLE LIBRARY PLASMIDS
3.3.10. RESTRICTION DIGESTION TO ELIMINATE LIBRARY PLASMIDS IN DUPLICATES 42

3.3.11. ISOLATION OF LIBRARY PLASMID DNA FROM YEAST 42

3.4. BACTERIAL EXPRESSION SYSTEM 43

3.4.1. BACTERIAL STRAINS 43

3.4.2. EXPRESSION VECTORS 43

3.4.3. PREPARATION OF COMPETENT CELLS 44

3.4.3.1. PREPARATION OF CHEMICALLY COMPETENT BACTERIAL CELLS 44

3.4.3.2. PREPARATION OF ELECTROCOMPETENT BACTERIAL CELLS 45

3.4.4. TRANSFORMATION IN CHEMICALLY COMPETENT BACTERIAL CELLS 45

3.4.5. ISOLATION OF PLASMID DNA 46

3.4.5.1. ALKALINE LYSIS METHOD 46

3.4.5.2. MINIPREP KIT 47

3.4.6. STORAGE OF RECOMBINANT PLASMIDS 47

3.4.7. OVEREXPRESSION, SOLUBILISATION AND PURIFICATION OF RECOMBINANT PROTEINS 48

3.4.7.1. TRANSFORMATION OF RECOMBINANT PLASMID DNA IN E.COLI BL21 (DE3) CELLS 48

3.4.7.2. SCREENING BACTERIAL CELLS FOR PROTEIN EXPRESSION 48

3.4.7.3. LYSIS OF INDUCED BACTERIAL CULTURES 49

3.4.7.4. PURIFICATION OF FUSION PROTEINS USING GRAVITY FLOW COLUMNS 49

3.4.8. PROTEIN EXPRESSION ANALYSIS 50

3.4.8.1. SODIUM DODECYL SULPHATE- POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 50

3.4.8.2. WESTERN BLOT ANALYSIS 51

3.4.9. ASSAYS FOR PROTEIN-PROTEIN INTERACTION ANALYSIS 52
CHAPTER 4
STRUCTURAL SIMILARITY-BASED PREDICTIONS OF PROTEIN INTERACTIONS BETWEEN CHANDIPURA VIRUS AND HUMAN HOST

4.1. INTRODUCTION

4.2. RESULTS

4.2.1. INFERRING CHANDIPURA VIRUS-HUMAN HOST PROTEIN INTERACTIONS

4.2.2. CHANDIPURA VIRUS INVASION OF SUSCEPTIBLE CELLS THROUGH CLATHRIN DEPENDENT ENDOCYTOSIS

4.2.3. POST ENDOCYTIC UNCOATING OF CHANDIPURA VIRIONS

4.2.4. INTRACELLULAR REPLICATION AND RELEASE OF PROGENY CHANDIPURA VIRUS

4.2.5. CHANDIPURA VIRUS INVASION OF THE CENTRAL NERVOUS SYSTEM

4.2.6. DISRUPTION OF BLOOD BRAIN BARRIER DURING CHANDIPURA VIRUS INFECTION

4.2.6.1. ‘TROYAN HORSE’ CROSSING

4.2.6.2. DIRECT BLOOD BRAIN BARRIER CROSSING

4.2.7. VIRAL SPREAD AND SIMULTANEOUS DISRUPTION OF CENTRAL NERVOUS SYSTEM

4.3. CONCLUSION

CHAPTER 5
YEAST TWO-HYBRID SCREENING TO IDENTIFY THE CANDIDATE HOST PROTEIN INTERACTORS OF CHANDIPURA VIRUS MATRIX PROTEIN
5.1. INTRODUCTION

5.2. RESULTS

5.2.1. GENERATION OF BD FUSION CONSTRUCT OF CHANDIPURA VIRUS MATRIX GENE FOR YEAST TWO-HYBRID SCREENING

5.2.2. EXPRESSION OF BD-M IN SACCHAROMYCES CEREVISIAE STRAIN AH109

5.2.3. SCREENING OF HUMAN FETAL BRAIN CDNA LIBRARY FOR INTERACTORS OF MATRIX PROTEIN

5.2.4. DNA SEQUENCING

5.2.5. ALIGNMENT AND DESCRIPTION OF CLONES IDENTIFIED

5.2.5.1 PROTEIN SEQUENCE BLAST SEARCH OF CLONE MH52

5.2.5.2 PROTEIN SEQUENCE BLAST SEARCH OF CLONE MH76

5.2.5.3 PROTEIN SEQUENCE BLAST SEARCH OF CLONE MH79

5.2.5.4 PROTEIN SEQUENCE BLAST SEARCH OF CLONE MH104

5.2.5.5 PROTEIN SEQUENCE BLAST SEARCH OF CLONE MH122

5.2.5.6 PROTEIN SEQUENCE BLAST SEARCH OF CLONE MH182

5.2.5.7 PROTEIN SEQUENCE BLAST SEARCH OF CLONE MH216

5.2.5.8 PROTEIN SEQUENCE BLAST SEARCH OF CLONE MH231

5.2.5.9 PROTEIN SEQUENCE BLAST SEARCH OF CLONE MH323

5.2.5.10 PROTEIN SEQUENCE BLAST SEARCH OF CLONE MH365

5.3. DISCUSSION

CHAPTER 6

X
VALIDATION OF VIRAL-HOST INTERACTIONS 97

6.1. INTRODUCTION 99

6.2. RESULTS 99

6.2.1. GENERATION OF CONSTRUCTS FOR GST PULL DOWN AND PROTEIN INTERACTION ELISA 99

6.2.2. EXPRESSION AND SOLUBILISATION ANALYSIS OF FUSION PROTEINS 102

6.2.3. VALIDATION OF VIRAL-HOST PROTEIN INTERACTIONS BY GST PULLDOWN AND PROTEIN INTERACTION ELISA 107

6.3. CONCLUSION 109

CHAPTER 7
IDENTIFICATION AND CHARACTERIZATION OF LINEAR PEPTIDES INHIBITING THE HOST INTERACTIONS OF CHANDIPURA VIRUS MATRIX PROTEIN 113

7.1. INTRODUCTION 115

7.2. RESULTS 116

7.2.1. COMPUTATIONAL MODELING AND DOCKING OF INTERACTING VIRUS-HOST PROTEINS 116

7.2.2. IDENTIFICATION OF INTERFACIAL RESIDUES AND DESIGNING PUTATIVE INHIBITORY PEPTIDES 118

7.2.3. VALIDATING THE INHIBITORY POTENTIAL OF PEPTIDES TARGETING M-ABCE1 INTERACTIONS 120

7.3. CONCLUSION 125

CHAPTER 8
CONCLUSION AND FUTURE PROSPECTS 129

REFERENCES 133

APPENDIX-A 153
A.1 REAGENTS, BUFFERS AND CHEMICALS 155
A.2 MEDIA 164
A.3 ENZYMES 167

APPENDIX-B 169