# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>INNER FIRST PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION BY THE SCHOLAR</td>
<td>xi</td>
</tr>
<tr>
<td>SUPERVISOR’S CERTIFICATE</td>
<td>xii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxiii</td>
</tr>
<tr>
<td>CHAPTER-1</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 FLUID DYNAMICS</td>
<td>1</td>
</tr>
<tr>
<td>1.2 CONTINUUM HYPOTHESIS</td>
<td>1</td>
</tr>
<tr>
<td>1.3 MAGNETOHYDRODYNAMICS</td>
<td>2</td>
</tr>
<tr>
<td>1.4 FERROHYDRODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>1.5 HYDRODYNAMIC AND HYDROMAGNETIC STABILITY</td>
<td>3</td>
</tr>
<tr>
<td>1.6 TYPES OF FLUIDS</td>
<td>6</td>
</tr>
<tr>
<td>1.6.1 NEWTONIAN FLUIDS</td>
<td>7</td>
</tr>
</tbody>
</table>
1.6.2 NON-NEWTONIAN FLUIDS 7

1.6.2.1 VISCOELASTIC FLUIDS 7

1.6.2.1.1 WALTERS’ FLUID 8

1.6.2.1.2 RIVLIN-ERICKSEN FLUID 8

1.6.3 COUPLE-STRESS FLUID 9

1.6.4 FERROMAGNETIC FLUIDS 10

1.6.5 NANOFLUIDS 11

1.6.5.1 PREPARATIONS OF NANOFLUIDS 11

1.6.5.2 ADVANTAGES OF NANOFLUIDS 12

1.6.5.3 DISADVANTAGES OF NANOFLUIDS 12

1.6.5.4 APPLICATION OF NANOFLUIDS 13

1.7 BASIC EQUATIONS 13

1.7.1 EQUATION OF CONTINUITY 13

1.7.2 MOMENTUM EQUATION 13

1.7.3 MAXWELL’S EQUATION 13

1.7.4 EQUATION OF STATE 14

1.8 METHODS DETERMINING STABILITY 14

1.8.1 PERTURBATION METHOD 14

1.8.2 ENERGY METHOD 14

1.8.3 NORMAL MODE ANALYSIS METHOD 15
1.9 SOME STABILITY PROBLEMS

1.9.1 THERMAL STABILITY/RAYLEIGH BÉNARD CONVECTION

1.9.2 THERMOSOLUTAL STABILITY/DOUBLE DIFFUSIVE CONVECTION

1.10 EFFECT OF VARIOUS PARAMETERS

1.10.1 HALL EFFECT

1.10.2 MAGNETIC FIELD

1.10.3 ROTATION

1.10.4 COMRESSIBILITY

1.10.5 SUSPENDED PARTICLES

1.10.6 DARCY NUMBER

1.10.7 LEWIS NUMBER

1.10.8 CONCENTRATION RAYLEIGH NUMBER

1.10.9 MODIFIED DIFFUSIVITY RATIO

1.10.10 FLOW THROUGH POROUS MEDIA

1.10.10.1 POROUS MATERIAL

1.10.10.2 POROSITY

1.10.10.3 PERMEABILITY

1.10.10.4 DARCY’S LAW

1.10.10.4.1 CONSEQUENCES OF DARCY’S LAW
1.10.10.4.2 LIMITATIONS OF DARCY’S LAW 27
1.10.10.4.3 INADEQUACY OF DARCY’S LAW 27
1.10.10.5 BRINKMAN MODEL 27

1.11 CONTRIBUTION OF THE PRESENT THESIS 28

1.11.1 CHAPTER-1 28
1.11.2 CHAPTER-2 28
1.11.3 CHAPTER-3 29
1.11.4 CHAPTER-4 29
1.11.5 CHAPTER-5 30
1.11.6 CHAPTER-6 30

CHAPTER-2

2.1 THERMAL STABILITY OF A VISCOELASTIC FLUID PERMEATED WITH SUSPENDED PARTICLES IN HYDROMAGNETICS WITH ROTATION

2.1.1 INTRODUCTION 31
2.1.2 FORMULATION OF THE PROBLEM 31
2.1.3 DISPERSION RELATION 35
2.1.4 THE STATIONARY CONVECTION 37
2.1.5 STABILITY OF THE SYSTEM AND OSCILLATORY MODES 41
2.1.6 CONCLUSIONS 42
2.2 THE EFFECT OF COMPRESSIBILITY, ROTATION AND MAGNETIC FIELD ON THERMAL STABILITY OF WALTERS' FLUID PERMEATED WITH SUSPENDED PARTICLES IN POROUS MEDIUM

2.2.1 INTRODUCTION

2.2.2 FORMULATION OF THE PROBLEM

2.2.3 PERTURBATION EQUATIONS

2.2.4 DISPERSION RELATION

2.2.5 THE STATIONARY CONVECTION

2.2.6 STABILITY OF THE SYSTEM AND OSCILLATORY MODES

2.2.7 CONCLUSIONS

CHAPTER-3

3.1 EFFECT OF MAGNETIC FIELD ON THERMAL STABILITY OF ROTATING FERROMAGNETIC FLUID

3.1.1 INTRODUCTION

3.1.2 FORMULATION OF THE PROBLEM

3.1.3 PERTURBATION EQUATIONS

3.1.4 NORMAL MODE ANALYSIS

3.1.5 EXACT SOLUTION FOR FREE BOUNDARIES

3.1.6 THE CASE OF STATIONARY CONVECTION
3.1.7 THE CASE OF OSCILLATORY MODES 75

3.1.8 CONCLUSIONS 76

3.2 EFFECT OF SUSPENDED PARTICLES, MAGNETIC FIELD AND ROTATION ON THERMAL STABILITY OF FERROMAGNETIC FLUID

3.2.1 INTRODUCTION 77

3.2.2 FORMULATION OF THE PROBLEM 77

3.2.3 THE PERTURBATION EQUATIONS 80

3.2.4 NORMAL MODE ANALYSIS 82

3.2.5 EXACT SOLUTION FOR FREE BOUNDARIES 83

3.2.6 THE CASE OF STATIONARY CONVECTION 84

3.2.7 THE CASE OF OSCILLATORY MODES 90

3.2.8 CONCLUSIONS 91

CHAPTER-4

4.1 HALL EFFECT ON THERMAL STABILITY OF COUPLE STRESS FLUID PERMEATED WITH SUSPENDED PARTICLES

4.1.1 INTRODUCTION 94

4.1.2 MATHEMATICAL FORMULATION 95

4.1.3 NORMAL MODE ANALYSIS 98

4.1.4 STATIONARY CONVECTION 100
4.1.5 STABILITY OF THE SYSTEM AND OSCILLATORY MODES 105

4.1.6 CONCLUSIONS 106

4.2 HALL EFFECT ON THERMOSOLUTAL STABILITY OF COMPRESSIBLE RIVLIN-ERICKSEN FLUID PERMEATED WITH SUSPENDED PARTICLES IN POROUS MEDIUM

4.2.1 INTRODUCTION 108

4.2.2 FORMULATION OF THE PROBLEM AND PERTURBATION EQUATIONS 110

4.2.3 NORMAL MODE ANALYSIS AND DISPERSION RELATION 114

4.2.4 STATIONARY CONVECTION 117

4.2.5 STABILITY OF THE SYSTEM AND OSCILLATORY MODES 125

4.2.6 CONCLUSIONS 126

CHAPTER-5

5.1 DOUBLE DIFFUSIVE CONVECTION OF A ROTATING NANOFUID LAYER

5.1.1 INTRODUCTION 128

5.1.2 GOVERNING EQUATIONS 129

5.1.3 BASIC SOLUTIONS 133

5.1.4 PERTURBATION SOLUTION 134

5.1.5 NORMAL MODES AND STABILITY ANALYSIS 135