Chapter 3

Mate Functions in Near Subtraction Semigroups

This chapter contains two sections. The first section deals with the mate functions in a (right) near subtraction semigroup X. In Ring Theory a ring $(R, +, \cdot)$ is said to be Von-Neumann regular [48], if for every a in R there exists $b \in R$ such that $a = aba$. S. Suryanarayanan and N. Ganesan in their paper “Pseudo-Stable near rings”, Indian J. Pure and Appl. Math 19(12) (December, 1988) 1206 – 1216 introduced the concept of mate functions in a near ring with view to handling the regularity structure with considerable ease. Motivated by this, using some axiom of choice, we introduce the concept of mate functions in a near subtraction semigroup.

A function $f : X \to X$ is called a mate function for X, if $a = af(a)a$ for all a in X. If, in addition, $f(a)af(a) = f(a)$ for all a in X then f is called a mutual mate function for X. We show that if X admits a mate function then it certainly has a mutual mate function. We establish that X possesses a unique mutual mate function if and only if $E \subseteq C(E)$. We derive some properties of X, when X has a unique mutual mate function.

In the second section, we define a near subtraction semigroup X to be P_1 if $aX = aXa$ for every a in X. We also discuss certain properties of a zero symmetric P_1 near subtraction semigroup with a mate function. We also obtain a characterisation of P_1 near subtraction semigroups. Some of the results in

3.1 Mate Functions

We shall now give the definition of a mate function in a near subtraction semigroup and illustrate this concept with suitable examples. We discuss some properties of ‘mates’. We also obtain characterisations of mate functions.

Definition 3.1.1. Let \mathbb{B} be a near subtraction semigroup. If there exists a map $f: \mathbb{B} \rightarrow \mathbb{B}$ such that $a = af(a)a$ for all a in \mathbb{B}, we call f' a mate function for \mathbb{B}. $f(a)$ is called a mate of a.

Definition 3.1.2. We say that \mathbb{B} is an

(i) S-near subtraction semigroup if $a \in Xa$ for all $a \in X$

(ii) S'-near subtraction semigroup if $a \in aX$ for all $a \in X$

(iii) SS'-near subtraction semigroup if it is both an S-near subtraction semigroup and an S'-near subtraction semigroup.

Examples 3.1.3. (a) We consider the near subtraction semigroup $(X, -, \cdot)$ with $X = \{0, a, b, 1\}$ where we define ‘$-$’ and ‘\cdot’ as follows:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

The map $f : X \rightarrow X$ defined by $f(0) = 0$, $f(a) = a$; $f(b) = b$; $f(1) = 1$ is a mate function for X.
(b) Let $X = \{0, a, b, c\}$ in which \(\cdot\) and \(\cdot\) are defined by

\[
\begin{array}{ccc}
- & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & a & a \\
b & b & 0 & b & b \\
c & c & c & 0 & c \\
\end{array}
\quad
\begin{array}{ccc}
\cdot & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & b & c \\
b & 0 & 0 & 0 & b \\
c & 0 & a & b & c \\
\end{array}
\]

This near subtraction semigroup has no mate function since b has no mate $[bf(b) \neq b]$.

(c) We consider the near subtraction semigroup (X, \cdot) where $X = \{0, a, b, c\}$ in which \(\cdot\) and \(\cdot\) are defined by

\[
\begin{array}{ccc}
- & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & c & b \\
b & b & 0 & 0 & b \\
c & c & 0 & c & 0 \\
\end{array}
\quad
\begin{array}{ccc}
\cdot & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & b & c \\
b & 0 & 0 & 0 & b \\
c & 0 & a & b & c \\
\end{array}
\]

Then (X, \cdot) is an S near subtraction semigroup but not S'.

(d) Let $X = \{0, a, b, 1\}$ in which \(\cdot\) and \(\cdot\) are defined as follows:

\[
\begin{array}{ccc}
- & 0 & a & b & 1 \\
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 1 & b \\
b & b & 0 & 0 & b \\
1 & 1 & 0 & 1 & 0 \\
\end{array}
\quad
\begin{array}{ccc}
\cdot & 0 & a & b & 1 \\
0 & 0 & 0 & 0 & 0 \\
a & a & a & a & a \\
b & a & 0 & 1 & b \\
1 & 0 & a & 1 & b \\
\end{array}
\]

Then (X, \cdot) is an SS' near subtraction semigroup.

Theorem 3.1.4. Let X be an S-near subtraction semigroup. Let f be a map from X into X. Then the following statements are equivalent.

(i) f is a mate function for X.

23
(ii) $f(a)a$ is an idempotent and $Xa = Xf(a)a$ for all $a \in X$.

(iii) For every pair of principal X-systems Xa, Xb and for every X-homomorphism, $g : Xa \to Xb$ we have $g(xa) = xag(f(a)a)$ for all $x \in X$.

Proof. (i) \Rightarrow (ii): $(f(a)a)^2 = (f(a)a)(f(a)a) = f(a)(af(a)a) = f(a)a$ for all $a \in X$. Therefore, $f(a)a \in E$ for every $a \in X$. Also, $Xa = Xaf(a)a \subseteq Xf(a)a \subseteq Xa$. Hence, $Xa = Xf(a)a$ for all $a \in X$.

(ii) \Rightarrow (iii): Since $Xa = X(f(a)a)$, we observe that for every $x \in X$, there is some n in X, such that $xa = nf(a)a$. For a, b in X we consider an X-homomorphism $g : Xa \to Xb$. Obviously, then we have $g(xa) = g(nf(a)a) = g(nf(a)af(a)a) = nf(a)ag(f(a)a) = xag(f(a)a)$ and (iii) follows.

(iii) \Rightarrow (i): In (iii) we take $b = a$, g to be the identity X-homomorphism and x be such that $xa = a$. This is possible since X is an S-near subtraction semigroup. We get $a = xa = g(xa) = g(xaf(a)a) = xag(f(a)a) = xaf(a)a = af(a)a$ and (i) follows.

In the following result we give a simple characterisation of mate functions

Theorem 3.1.5. Let X be an S'-near subtraction semigroup. Then a map $f : X \to X$ is a mate function for X if and only if $af(a) \in E$ and $aX = af(a)X$ for every a in X.

Proof. For the ‘only if’ part assume ‘f’ is a mate function for X. Then $(af(a))^2 = (af(a))af(a) = (af(a))f(a) = af(a)$. Therefore $af(a) \in E$. Also $aX = af(a)aX \subseteq af(a)X \subseteq aX$. Hence $aX = af(a)X$, for all $a \in X$.

24
For the ‘if’ part, let \(a \in X \). Since \(X \) is an \(S' \) near subtraction semigroup, \(a \in aX \). Also \(aX = af(a)X \). Then there exists some \(n \) in \(X \) such that \(a = af(a)n \). But \(af(a) \in E \). Therefore \(af(a)a = af(a)(af(a)n) = (af(a))^2n = af(a)n = a \). Hence \(f \) is a mate function for \(X \). \(\square \)

We shall now define the concept of a mutual mate function in a near subtraction semigroup

Definition 3.1.6. We say that, a mate function \(f : X \to X \) is a mutual mate function if \(x \) is also a mate of \(f(x) \) for every \(x \) in \(X \). We refer to each of \(x \) and \(f(x) \) as mutual mates of each other. If a mutual mate function happens to be an involution, we call it an involutary mate function for \(X \).

Lemma 3.1.7. If \(X \) admits a mate function ‘\(f \)’ then it certainly has a mutual mate function.

Proof. Let us define \(g : X \to X \) such that \(g(x) = f(x)xf(x) \) for every \(x \) in \(X \).

\[
xg(x)x = x(f(x)xf(x))x = xf(x)(xf(x)x) = xf(x)x = x
\]

and this guarantees that \(g \) is a mate function for \(X \).

Further \(g(x)gx = (f(x)xf(x))xf(x) = (f(x)x)(f(x)x)(f(x)x)f(x) = (f(x)x)^3f(x) \) [since \(f(x)x \in E \) = \(f(x)xf(x) = g(x) \). This guarantees that \(g \) is a mutual mate function for \(X \). \(\square \)

We omit the proofs of the following two corollaries as they are immediate consequences of Theorems 3.1.4 and 3.1.5

Corollary 3.1.8. Let \(X \) be an \(SS' \) near subtraction semigroup. Then the following statements are equivalent.
(i) \(f \) is a mate function for \(X \)

(ii) \(f(a)a \in E \) and \(Xa = Xf(a)a \) for every \(a \in X \)

(iii) \(af(a) \in E \) and \(aX = af(a)X \) for every \(a \in X \)

(iv) For every pair of principal \(X \)-systems \(X, Xb \) and for every \(X \)-homomorphism \(g : Xa \to Xb, g(xa) = xag(f(a)a) \) for all \(x \in X \).

Corollary 3.1.9. Let \(X \) be an \(SS' \) near subtraction semigroup. Then the following statements are equivalent.

(i) \(f \) is a mutual mate function for \(X \)

(ii) as in Corollary 3.1.8

(iii) as in Corollary 3.1.8

(iv) \(f(a)X = f(a)aX \)

(v) \(Xf(a) = Xaf(a) \) for every \(a \) in \(X \).

Theorem 3.1.10. Let \(X \) be a nil near subtraction semigroup with a mate function \(f \) and let \(g : X \to X \) be such that \(g(x) = f(x)[xf(x) - x^{k-1}] \) for every \(x \) in \(X \) where \(k \) (depending on \(x \)) is some definite integer \(> 1 \) such that \(x^k = 0 \). Then \(g \) is a mate function for \(X \). If \(f \) is a mutual function for \(X \), then so is \(g \).

Proof. For every \(x \) in \(X \), we have \(xg(x)x = xf(x)[xf(x) - x^{k-1}]x = xf(x)[xf(x)x - x^k] = xf(x)[x - 0] = xf(x)x = x \). Therefore \(g \) is mate function for \(X \).

Suppose \(f \) is a mutual mate function for \(X \). Then for every \(x \) in \(X \), \(g(x)xg(x) = f(x)[xf(x) - x^{k-1}]xg(x) = f(x)[xf(x)x - x^k]g(x) = f(x)[xf(x)x - 0]g(x) = f(x)xg(x) = f(x)xf(x)[xf(x) - x^{k-1}] = f(x)[xf(x) - x^{k-1}] = g(x) \). Hence \(g \) is a mutual mate function for \(X \). \(\square \)
As an immediate consequence we have the following corollary

Corollary 3.1.11. If X is a near subtraction semigroup with a mutual mate function f and if $x^2 = 0$ for some x in X, then the element $f(x)(xf(x) - x)$ is a mutual mate of X.

Proof. It follows from Theorem 3.1.10 by substituting $k = 2$. \hfill \square

Lemma 3.1.12. Suppose $xy = 0$ for some x, y in a near subtraction semigroup X. Then $(yx)^2X = \{y0\}$ and in particular $(yx)^r = y0$, for every $r \geq 2$. If X is zero symmetric and reduced then X has (\ast, IFP).

Proof. Since $xy = 0$, we get $(yx)^2 = (yx)(yx) = y(xy)x = y0x = y0$. Hence for all n in X, we have $(yx)^2n = y0n = y0$. This yields $(yx)^2X = \{y0\}$ and by taking $n = (yx)^{r-2}$ where $r > 2$, we get $(yx)^2(yx)^{r-2} = y0$. Hence $(yx)^r = y0$ for every $r \geq 2$.

Also when X is reduced and zero-symmetric, $xy = 0 \Rightarrow (yx)^2 = y0 = 0 \Rightarrow yx = 0$ and $(xny)^2 = (xny)(xny) = xn(yx)ny = xn(0)ny = 0 \Rightarrow xny = 0$

Hence X has (\ast, IFP). \hfill \square

Theorem 3.1.13. Suppose $ab = b^2$ and $a^2 = ba$ for some a, b in X. Further let $u_1 = a - b$, $u_2 = au_1$, $u_3 = bu_1$, $u_4 = b - a$, $u_5 = au_4$, $u_6 = bu_4$. If there exist x_i’s in X such that $u_i = x_iu_i'$ where $r \geq 2$, $i = 1, 2, 3, 4, 5, 6$ then $a = b$.

Proof. We have $u_1a = (a - b)a = a^2 - ba = 0$ and $u_1b = (a - b)b = ab - b^2 = 0$. Therefore $u_1a = 0 = u_1b$. Also we have $u_2^2 = (au_1)(au_1) = a(u_1a)u_1 = a0u_1 = a0$ and $u_3^2 = (bu_1)^2 = (bu_1)(bu_1) = b(u_1b)u_1 = b0u_1 = b0$. Further since $u_2 = x_2u_2$, we get $u_2 = x_2a0$. Therefore $u_2^2 = x_2a0u_2 = x_2a0 = u_2$. Thus $u_2 = u_2^2 = a0$. 27
Similarly, since \(u_3 = x_3 u_2^2 \), we have \(u_3 = x_3 b0 \Rightarrow u_3^2 = x_3 b0 u_3 = x_3 b0 = u_3 \).

Therefore \(u_3 = u_3^2 = b0 \). We now observe that, \(u_1^2 = u_1 u_1 = (a - b)u_1 = a u_1 - b u_1 = u_2 - u_3 = a0 - b0 = (a - b)0 = u_10 \). Further since \(u_1 = x_1 u_1^2 \), we have as before \(u_1 = x_1 u_10 \Rightarrow u_1^2 = x_1 u_10 u_1 = x_1 u_10 = u_1 \). Therefore \(u_1 = u_1^2 = u_10 \). Clearly then \(u_1a = u_10a = u_10 = u_1 \). That is, \(u_1 = u_1a \). But \(u_1a = 0 \) Therefore \(u_1 = 0 \).

That is, \(a - b = 0 \).

We shall now show that \(b - a = 0 \). We observe that, \(u_4 = b - a \)

\(\Rightarrow u_4a = (b - a)a = ba - a^2 = a^2 - a^2 = 0 \). Similarly, \(u_4b = (b - a)b = b^2 - ab = b^2 - b^2 = 0 \). Also, \(u_5^2 = (au_4)(au_4) = a(u_4a)(u_4) = a0u_4 = a0 \). And

\(u_5^2 = (b u_4)^2 = b(u_4 b)u_4 = b0u_4 = b0 \). Further since \(u_5 = x_5 u_5^2 \), we have \(u_5 = x_5 a0 \) and therefore \(u_5^2 = x_5 a0 u_5 = x_5 a0 = u_5 \). Thus \(u_5 = u_5^2 = a0 \).

Similarly, since \(u_6 = x_6 u_6^2 \), we have \(u_6 = x_6 b0 \Rightarrow u_6^2 = x_6 b0 u_6 = x_6 b0 = u_6 \). It follows that \(u_4^2 = (u_4)(u_4) = (b - a)u_4 = bu_4 - au_4 = u_6 - u_5 = b0 - a0 = (b - a)0 = u_40 \). Since \(u_4 = x_4 u_4^2 \), we have, as before, \(u_4 = x_4 u_40 \Rightarrow u_4^2 = x_4 u_40 u_4 = x_4 u_40 \).

Therefore \(u_4 = u_4^2 = u_40 \). Clearly then \(u_4a = u_40 a = u_40 = u_4 \). But \(u_4a = 0 \).

Therefore \(u_4 = b - a = 0 \). Appealing to Lemma 2.2.4(viii), we get \(a = b \).

In the following theorem we obtain a necessary and sufficient condition for a near subtraction semigroup to possess a unique mutual mate function.

Theorem 3.1.14. Let \(X \) admit mate functions. Then \(X \) possesses a unique mutual mate function if and only if \(E \subseteq C(E) \).

Proof. For the ‘only if’ part, we suppose that, \(f \) is the unique mutual mate function for \(X \). Clearly then \(f \) is involutary as both \(X \) and \(f(f(x)) \) serve as
mutual mates of \(f(x) \) for all \(x \) in \(X \). Also \(f \) fixes every element of \(E \). Then it is clear that for every \(xy \) in \(E \), both \(yf(xy) \) and \(f(xy)x \) serve as mutual mates of \(xy \).

The uniqueness of \(f \) (as the mutual mate function) for \(X \) demands that these mutual mates of \(xy \) must be identical with \(f(xy) \). It follows that,
\[
(f(xy))^2 = (f(xy)x)(yf(xy)) = f(xy)xyf(xy) = f(xy).
\]
This forces \(f(xy) \in E \). Since \(f \) is involutorial and since it fixes every idempotent, we get, \(xy = f(f(xy)) = f(xy) \in E \). This guarantees that \((E, \cdot)\) is a sub semigroup of \((X, \cdot)\).

We make use of this result to observe that \(f(yx) = yx \) also can serve as mutual mate of \(xy \) for all \(x, y \) in \(E \). Again from the uniqueness of \(f \) we get \(xy = f(xy) = f(yx) = yx \) and the ‘only if’ part follows.

For the ‘if’ part we first observe that Lemma 3.1.7 guarantees the existence of a mutual mate function \(f \) for \(X \). To prove \(g = f \), we freely make use of the following (i) the assumption that, \(E \subseteq C(E) \) and (ii) for every \(x \in X \) and for every mate function \(f \) of \(X \) both \(f(x)x \) and \(xf(x) \) are in \(E \).

We have for all \(a \) in \(X \),
\[
\begin{align*}
g(x) &= g(x)yg(x) = g(x)(xf(x)x)g(x) = g(x)x(f(x)x)g(x) \\
&= (f(x)x)(g(x)x)g(x) = f(x)x(g(x)xg(x)) = f(x)yg(x) = f(x)(xg(x)) \\
&= (f(x)xg(x))yg(x) = f(x)(xf(x))g(x) = f(x)(xg(x))(xf(x)) = f(x)(xg(x)x)f(x) \\
&= f(x)xf(x) = f(x).
\end{align*}
\]
This guarantees that, \(f \) is unique as the mutual mate function for \(X \).

\[\square\]

Proposition 3.1.15. Let \(f \) be a mate function for \(X \). Then any \(X \)-system \(A \) of \(X \) is idempotent.
Proof. As A is an X-system of X, $XA \subset A$. Clearly then $A^2 = AA \subset XA \subset A$. Also for any a in A, $a = af(a)a = a(f(a)a) \in AXA \subset AA = A^2$. Therefore $A \subset A^2$. Hence $A = A^2$ is idempotent. \hfill \Box

Theorem 3.1.16. Let X admit a unique mutual mate function `f'. Then X has the following properties:

(i) X is zero symmetric

(ii) f has the reversal law. That is, if k is any positive integer, then for $a_1, a_2, \cdots, a_k \in X$, we have $f(a_1 a_2 \cdots a_k) = f(a_k) f(a_{k-1}) \cdots f(a_1)$

(iii) $f(a^k) = (f(a))^k$ for any positive integer k and for any a in X

(iv) If X has no non-zero nilpotent elements, $e \in E$ and $x \in X$ are such that $exe = xe$ then $e \in C(X)$

(v) If X has no non-zero nilpotent elements, $E \subseteq C(X)$.

Proof. (i) For every n in X, define $f_n : X \to X$, such that f_n agrees with f in X^* and that $f_n(0) = n0$. Obviously f_n serves as a mutual mate function for X and the uniqueness of f (as the mutual mate function of X) demands that $f_n = f$. Clearly, f fixes every idempotent and as such $0 = f(0) = f_n(0) = n0$ for all x in X. Hence X is zero symmetric.

(ii) Let us prove this by simple induction on the number of elements k. When $k = 1$ the result holds trivially. We shall assume that the results holds for any set of k elements of X. Let $a_1, a_2, \cdots, a_k \in X$ and $a = a_1 a_2 \cdots a_k$ for convenience. Now by assumption, $f(a) = f(a_1 \cdot a_2 \cdots \cdot a_k) = f(a_k) f(a_{k-1}) \cdots f(a_2) f(a_1)$. Let `$b$' be any element of X. To get the desired result by simple induction we need
only to prove that \(f(ab) = f(b)f(a) \) (For this, we make use of Theorem 3.1.4 and Theorem 3.1.14).

Now \(ab = (af(a)a)(bf(b)b) = a(f(a)a)(bf(b))b = a(bf(b))(f(a)a)b = abf(b)f(a)ab \). Also \(f(b)f(a) = (f(b)b)(f(a)a)f(a) = f(b)(bf(b))(f(a)a)f(a) = f(b)(f(a)a)b(f(b))f(a) = f(b)f(a)abf(b)f(a) \). This guarantees that \(f(b)f(a) \) is a mutual mate of \(ab \). Since \(f(ab) \) is the unique mutual mate of \(ab \), we must have \(f(ab) = f(b)f(a) \) and the result follows.

(iii) This follows by taking \(a = a_1 = a_2 = a_3 \cdots = a_k \) in (ii).

(iv) \(exe = xe \Rightarrow (ex - xe)e = 0 \Rightarrow e(ex - xe) = 0 \) (by Lemma 3.1.12)
\(\Rightarrow ex(ex - xe) = 0 \) by IFP. Also \(xe(ex - xe) = x0 = 0 \) (from (i)). Thus
\(ex(ex - xe) - xe(ex - xe) = 0 \Rightarrow (ex - xe)^2 = 0 \). Similarly \((xe - ex)^2 = 0 \).
Since \(X \) has no non-zero nilpotent elements we get \(ex - xe = 0, \; xe - ex = 0 \).
Therefore \(ex = xe \). Hence \(e \in C(X) \).

(v) For every \(e \) in \(E \) and for every \(a \) in \(X \) we have, \((af(a)e - af(a))e = 0, \)
\((af(a) - af(a)e)e = 0 \). Since \(f(a)a, \; af(a) \) and \(e \in E \), we invoke Lemma 3.1.14 to get \((eaf(a) - af(a))e = 0, \; (af(a) - eaf(a)e = 0 \). By IFP, we have
\((eaf(a) - af(a))ae = 0, \; (af(a) - eaf(a))ae = 0 \Rightarrow eaf(a)ae - af(a)ae = 0, \)
\(af(a)ae - eaf(a)ae = 0 \Rightarrow eae - ac = 0, \; ae - eae = 0 \). Therefore \(eae = ae \) and rest of the proof is taken care of by (iv).

\[\square \]

Theorem 3.1.17. Suppose that \(X \) has IFP and a mate function ‘\(f \)’. Then the following statements are true.

(i) For any \(x, \; y \in X \) and \(e^2 = e, \; xy = xy \)
(ii) \(a \in Xa^2 \cap a^2X\) for all \(a \in X\)

(iii) \(X\) has no non zero nilpotent elements

(iv) \(X\) has the strong IFP.

Proof. (i) Let \(x, y \in X\) and \(e^2 = e\). Since \((x - xe)e = 0\) by IFP, we have \((x - xe)ye = 0 \Rightarrow xye - xeye = 0\). Similarly \(xye - xye = 0\). Therefore \(xye = xye\).

(ii) Let \(a \in X\). Since \(f\) is a mate function for \(X\) we have \(a = af(a)a\). Since \(af(a)\) and \(f(a)a\) are idempotents (by Lemmas 3.1.4 and 3.1.5). Now
\[
af(a) = (f(a)a)^2 = (f(a)a)(f(a)a) = f(a)a(f(a)a) = f(a)f(a)a(af(a)a) \quad \text{[by (i)]}
\]
\[
= (f(a))^2a^2 \in Xa^2.
\]
That is, \(f(a)a \in Xa^2\). And
\[
af(a) = (af(a))^2 = (af(a))(af(a))
\]
\[
= af(a)(af(a)) = a(af(a))f(a)(af(a)) \quad \text{[by (i)]}
\]
\[
= a^2f(a)(f(a)af(a)) = a^2(f(a))^2
\]
\[
\in a^2X.
\]
That is, \(af(a) \in a^2X\). Therefore \(a = af(a)a \in Xa^2 \cap a^2X\) for all \(a \in X\).

(iii) Suppose ‘\(a\)’ is a nilpotent element of \(X\). Then \(a^k = 0\) for some positive integer \(k\). Since \(a \in Xa^2 \cap a^2X\) there exist \(x, y \in X\) such that \(a = xa^2 = a^2y\).
\[
a = a^2y = a(a^2y)y = a^3y^2 = a^2(a^2y)y^2 = a^4y^3 \cdots = a^ky^{k-1} = 0y^{k-1} = 0.
\]
That is, \(X\) has no non-zero nilpotent elements.

(iv) Let \(I\) be any ideal of \(X\). Let \(a, b \in X\) with \(ab \in I\). Since \(X\) has a mate function ‘\(f\)’, \(bf(b)\) is idempotent. Now
\[
axb = axbf(b)b = ax(bf(b))b
\]
\[
= abf(b)x(bf(b)b) = abf(b)xb \in abX \subseteq I \quad \text{for all} \quad x \in X.
\]
Consequently \(axb \in I\). And the desired result now follows. (by Definition 2.2.34).

Proposition 3.1.18. Let \(X\) be a zero symmetric near subtraction semigroup with a mate function ‘\(f\)’. Then \(X\) has \((\ast, \text{IFP})\) if and only if \(L = \{0\}\) where \(L\) is the set of all nilpotent elements of \(X\).
Proof. Suppose X has (\ast, IFP). If $a^2 = 0$ for any a in X, then by IFP $af(a)a = 0$. That is $a = 0$. Hence $L = \{0\}$.

For the converse we assume, $L = \{0\}$. Suppose $ab = 0$ for some a, b in X. Then $(ba)^2 = (ba)(ba) = b(ab)a = b0a = 0$. Since X has no non-zero nilpotent elements we get $ba = 0$. Also for any n in X, $(anb)^2 = (anb)(anb) = an(ba)nb = an0nb = 0$ as $ba = 0$. Consequently $anb = 0$. That is, X has (\ast, IFP). \hfill \Box

We furnish below another characterisation of mate functions

Proposition 3.1.19. Let X be a zero symmetric near subtraction semigroup. Then X has a mate function if and only if every X-system of X is idempotent and X is an S-near subtraction semigroup.

Proof. For the ‘only if’ part, we suppose X has a mate function ‘f’. For $a \in X$, $a = af(a)a \in Xa$ and hence X is an S-near subtraction semigroup. Also proposition 3.1.15 demands that every X-system of X is idempotent.

For the ‘if’ part, as X is an S near subtraction semigroup $a \in Xa$ for every $a \in X$. Since Xa is an X-system of X it is idempotent (by assumption). Thus $Xa = (Xa)^2 = XaXa = (Xa)a \subset (Xa)a = Xa^2$. Therefore $a \in Xa \subset Xa^2$. Hence there exists $b \in X$ such that $a = ba^2$. Therefore $a^2 = 0 \Rightarrow a = 0$ for all $a \in X$. Now Proposition 2.2.28 demands that $L = \{0\}$

Therefore by Proposition 3.1.18 X has (\ast, IFP). Again we get $a^2 = aba^2$ and this implies $(a - aba)a = 0$. Further, $a(a - aba) = 0$ and $aba(a - aba) = 0$. Consequently $(a - aba)^2 = (a - aba)(a - aba) = a(a - aba) - aba(a - aba) = 0$. Similarly $(aba - a)^2 = 0$. As $L = \{0\}$ we get $a = aba$. By setting $b = f(a)$ we see that $a = af(a)a$ and hence f is a mate function for X. \hfill \Box
Theorem 3.1.20. Let X be a zero symmetric near subtraction semigroup with
(\star, IFP) and let f be a mate function for X. If $S = (0 : Xa)$ then $Xa = (0 : S)$.

Proof. We observe that, in view of Proposition 3.1.18, $L = \{0\}$. Let $y \in Xa$
Then $y = xa$ for some $x \in X$. Let $s \in S = (0 : Xa)$. Therefore we get $sy = 0$
$\Rightarrow s(xa) = 0 \Rightarrow (xa)s = 0$ [by $(\star, \text{IFP})] \Rightarrow xa \in (0 : S) \Rightarrow y \in (0 : S)$.
Consequently, $Xa \subseteq (0 : S)$

To prove the reverse inclusion, we consider $y \in (0 : S)$. Then $yS = \{0\}$.
Again $(y - yf(a)a)f(a)a = 0, (yf(a)a - y)f(a)a = 0 \Rightarrow (y - yf(a)a)Xf(a)a$
$= \{0\}, (yf(a)a - y)Xf(a)a = \{0\}$ [Since $Xf(a)a = Xa] \Rightarrow (y - yf(a)a)Xa$
$= \{0\}, (yf(a)a - y)Xa = \{0\} \Rightarrow y - yf(a)a, yf(a)a - y \in S$. Consequently
we get $y(y - yf(a)a) = 0, y(yf(a)a - y) = 0$ and $yf(a)a(y - yf(a)a) = 0,$
$yf(a)a(yf(a)a - y) = 0$ and hence $(y - yf(a)a)^2 = 0, (yf(a)a - y)^2 = 0$
$\Rightarrow y - yf(a)a = 0, yf(a)a - y = 0$ [since $L = \{0\}] \Rightarrow y = yf(a)a \in Xa$.
Thus $(0 : S) \subseteq Xa$ and the desired result now follows. \Box

Remark 3.1.21. It is worth noting that in view of Proposition 2.2.23 when
$X(= X_0)$ with (\star, IFP) admits mate functions every principal X-system of Xa of
X is an annihilator ideal. In fact $Xa = (0 : (0 : Xa))$.

We are now in a position to prove one of our principal theorems of this chapter

Theorem 3.1.22. Let $X(= X_0)$ admit a mate function ‘f’. Then the following
statements are equivalent.

(i) Every principal X-system of X is an invariant X-system

(ii) $aX = aXa$ for all a in X (That is, X is a P_1-near subtraction semigroup)
(iii) For all X-systems A and B of X, $A \cap B = AB$

(iv) $Xa \cap Xb = Xab$ for all a, b in X

(v) Every X-system of X is completely semiprime X-system

(vi) X has property P_4

(vii) X has strong IFP.

Proof. (i) \Rightarrow (ii): We observe that Xa is a principal X-system of X, for every $a \in X$, hence

$$(Xa)X \subseteq Xa \quad (3.1)$$

Since f is a mate function for X, $a = af(a)a$. By relation (3.1), for every $n \in X$, there exists $n' \in X$ such that

$$(f(a)a)n = n'a \quad (3.2)$$

Now, $an = (af(a)a)n = a(f(a)a)n = an'a$ [by equation (3.2)]. Therefore $aX \subseteq aXA$. Consequently $aX = aXa$.

(ii) \Rightarrow (iii): Let $a \in A \cap B$. Obviously $a = af(a)a \in A(XB) \subseteq AB$. Thus $A \cap B \subseteq AB$. Now let $n \in AB$. Then $n = a_1b_1$ where $a_1 \in A$ and $b_1 \in B$. We have $n = a_1b_1 \in a_1X = a_1Xa_1$ and therefore $n = a_1xa_1$ (for some x in X) $= a_1(xa_1) \in a_1(XA) \subseteq a_1A \subseteq A$. Therefore $n \in A$. This guarantees $AB \subseteq A$. Again since $n = a_1b_1 \in XB \subseteq B$, we get $AB \subseteq B$. Collecting all these pieces we get $AB \subseteq A \cap B$ and (iii) follows.

(iii) \Rightarrow (iv): For a, b in X, $Xa \cap Xb = XaXb$, by taking $A = Xa$ and $B = Xb$ in (iii). We have obviously $Xa = Xa \cap X = XaX$ and this yields $Xab = XaXb$ and (iv) follows.
(iv) ⇒ (v): For every $a \in X$, $a = af(a)a \in Xa = Xa \cap Xa = Xa^2$ and therefore $a^2 = 0 \Rightarrow a = 0$. By Proposition 2.2.28 $L = \{0\}$ and Proposition 3.1.18 guarantees that X has (\ast, IFP). Let A be any X-system of X and let $a^2 \in A$. Obviously $a \in Xa = Xa \cap Xa = Xa^2 \subset XA \subset A$. Therefore $a^2 \in A \Rightarrow a \in A$ and (v) follows.

(v) ⇒ (vi): Let $ab \in I$, where I is any ideal of X. Now $(ba)^2 = (ba)(ba) = b(ab)a \in XIX \subset XI \subset I$. Since $X = X_0$, I is an X-system by Proposition 2.2.18. Thus $(ba)^2 \in I$ and (v) demands that $ba \in I$ and (vi) follows.

(vi) ⇒ (vii): Let I be any ideal of X and let $ab \in I$. Now (vi) ⇒ $ba \in I$ and therefore $ban \in IX \subset I$ for all n in X. Again (vi) guarantees that $(an)b \in I$ and (vii) follows.

(vii) ⇒ (i): As $\{0\}$ is an ideal of X, (vii) ⇒ $a^2(= aa) = 0 \Rightarrow af(a)a = 0 \Rightarrow a = 0$. Therefore by Proposition 2.2.28 $L = \{0\}$ and Proposition 3.1.18 guarantees that X has (\ast, IFP). In view of Remark 3.1.21 it follows that Xa is an ideal of X. Consequently every principal X-system of X is an invariant X-system of X. □

3.2 P_1-Near Subtraction semigroups

In this section we introduce the concept of P_1-near subtraction semigroups, obtain a characterisation theorem and prove elementary important properties.

Definition 3.2.1. We say that X is a P_1 near subtraction semigroup if $aX = aXa$ for every a in X.

36
We furnish below examples of P_1-near subtraction semigroups

Examples 3.2.2. (a) We consider the near subtraction semigroup $(X, -, \cdot)$ with $X = \{0, a, b, 1\}$ where we define '$-' and '$\cdot'$ as follows:

\[
\begin{array}{c|cccc}
- & 0 & a & b & 1 \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & a & 0 \\
b & b & b & 0 & 0 \\
1 & 1 & b & a & 0 \\
\end{array}
\quad
\begin{array}{c|cccc}
\cdot & 0 & a & b & 1 \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & a & 0 \\
b & b & 0 & b & b \\
1 & 0 & a & b & 1 \\
\end{array}
\]

Then $(X, -, \cdot)$ is a P_1 near subtraction semigroup.

(b) Let $X = \{0, a, b, c\}$ in which '$-' and '$\cdot'$ are defined by

\[
\begin{array}{c|cccc}
- & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & a & a \\
b & b & b & 0 & b \\
c & c & c & c & 0 \\
\end{array}
\quad
\begin{array}{c|cccc}
\cdot & 0 & a & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & b & c \\
b & b & 0 & b & b \\
c & 0 & a & b & c \\
\end{array}
\]

This is not a P_1-near subtraction semigroup.

Proposition 3.2.3. A homomorphic image of a P_1 near subtraction semigroup is also a P_1 near subtraction semigroup.

Proof. Let X be a P_1-near subtraction semigroup and let $h : X \to X'$ be an epimorphism. Let $a' \in X'$, then there exists $a \in X$ such that $a' = h(a)$. For any $n' \in X'$, there exists $n \in X$ such that $n' = h(n)$. Therefore $a'n' = h(a)h(n) = h(an)$. Since X is a P_1-near subtraction semigroup, $aX = aXa$. Then $an = aba$ for some $b \in X$. Therefore $a'n' = h(aba) = h(a)h(b)h(a) = a'b'a$ where $b' = h(b) \in X'$ and hence $a'X' \subset a'X'a'$.

37
In a similar fashion we get $a'X'a' \subseteq a'X'$. Hence $a'X'a' = a'X'$ and the desired result now follows.

Theorem 3.2.4. If X is a zero symmetric P_1 near subtraction semigroup with a mate function, then

(i) X has no non-zero nilpotent elements
(ii) For $x, y \in X$, $xy = 0 \Rightarrow yx = 0$
(iii) X has IFP
(iv) If $e \in E$ and $x \in X$ are such that $exe = xe$ then $e \in C(X)$
(v) $E \subseteq C(X)$
(vi) $LX = \{0\}$.

Proof. (i) Let $'a'$ be nilpotent element of X. Then there exists a positive integer k such that $a^k = 0$. Since X has a mate function $'f'$ such that $a = af(a)a$. That is, $a = (af(a))a \in aX = aXa = (aX)a = (aX)a = aXa^2 \subseteq Xa^2$. That is, $a \in Xa^2$. Repeating like this we get $a \in Xa^k = \{0\}$. Consequently X has no non-zero nilpotent elements. That is, $L = \{0\}$.

Since $L = \{0\}$ Proposition 3.1.18 guarantees that (ii) and (iii) hold good.

Again Theorem 3.1.16(iv), (v) guarantee that (iv) and (v) hold good.

(vi) For all a in X, $aX = (aXa) = aXa^r$ for every integer $r \geq 1$. If $a \in L$, $a^r = 0$ for some positive integer. Clearly then $aX = \{0\}$, and (vi) follows.

A near subtraction semigroup X with a mate function f has the property that for every a in X, there is some a' in X such that $a - aa'a, aa'a - a \in L$. To verify
this we need only to observe that $0 \in L$ and take $f(a)$ for a'. Motivated by this we give the following

Definition 3.2.5. (S. Suryanarayanan [46]) We say that X has (L, \ast) property, if for every a in X there is some a' in X such that $a - aa'a \in L$, $aa'a - a \in L$ and a' is called an L-associate of a.

We shall now discuss the behaviour of the L-associates of elements of a near subtraction semigroup X with the (L, \ast) property

Example 3.2.6. Let $X = \{0, a, b, 1\}$ in which ‘$-$’ and ‘$.$’ are defined by

\[
\begin{array}{c|cccc}
- & 0 & a & b & 1 \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 1 & b \\
b & b & 0 & 0 & b \\
1 & 1 & 0 & 1 & 0 \\
\end{array}
\quad
\begin{array}{c|cccc}
\cdot & 0 & a & b & 1 \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & a & a & a & a \\
b & a & 0 & 1 & b \\
1 & 0 & a & b & 1 \\
\end{array}
\]

The map $f : X \to X$ is a mate function. Then X has (L, \ast) property.

Lemma 3.2.7. Let X have the following properties:

(α) (L, \ast) property

(β) $xy = 0 \Rightarrow yx = 0$ for x, y in X

(γ) $XL = \{0\}$.

If a' is an L-associate of a in X then we have

(i) $aa', (a'a)^2 \in E$

(ii) $a'aa'$ is also an L-associate of a.
Proof. (i) Since X has (L, \ast) property, $a - aa'a, aa'a - a \in L$. We have by assumption (γ), $X(a - aa'a) = \{0\}$ and consequently $a'(a - aa'a) = 0$, $a'(aa'a - a) = 0$. Again by assumption (β), we have $(a - aa'a)a' = 0$, $(aa'a - a)a' = 0$. That is, $aa' - aa'aa' = 0, aa'aa' - aa' = 0$. Thus $aa' = aa'aa'$ which forces $aa' \in E$. Also $(a'a)^4 = a'(aa')(aa') = a'(aa')^3a = a'aa'a = (a'a)^2$ and hence $(a'a)^2 \in E$.

(ii) Further $a(a'a)^2 = aa'aa'a = (aa')^2a = aa'$. Thus $a - a(a'aa')a = a - a(a'a)^2 = a - aa'a \in L$. That is, $a - a(a'aa')a \in L$. In a similar fashion we get $a(a'aa')a - a \in L$. The desired result now follows.

We furnish below another characterisation of P_1-near subtraction semigroups

Proposition 3.2.8. If X is a zero symmetric P_1-near subtraction semigroup then X has the following properties:

(i) $LX = \{0\}$

(ii) (\ast, IFP)

(iii) (L, \ast) property.

Proof. (i) For all a in X, $aX = aXa = aXa^r$ for every integer $r \geq 1$. Thus whenever $a \in L$, $aX = \{0\}$ and (i) follows.

(ii) $ab = 0 \Rightarrow aXb = (aXa)b = aXab = aX0 = \{0\}$. Also $ab = 0 \Rightarrow ba \in L$ and hence $baX = \{0\}$. Since $ba \in bX = bXb$, $ba = byb$ for some y in X and we observe that $by \in L$. This yields $ba = byb \in byX = \{0\}$ and (ii) follows.
(iii) Taking $r = 2$ in (i), we have $a^2 = aa'a^2$ for some a' in X. Therefore $(a - aa'a)a$ and Theorem 3.2.4 guarantees that X has (\ast, IFP). Therefore $a(a - aa'a) = 0$ and $aa'(a - aa'a) = 0$. These force $(a - aa'a)^2 = 0$ and hence $a - aa'a \in L$. In a similar fashion we can prove $aa'a - a \in L$. Thus X has $(L, \ast) \text{ property.}$

Remark 3.2.9. “$LX = \{0\}$” and $ab = 0 \Rightarrow ba = 0$ together guarantees that “$XL = \{0\}$” for a zero symmetric P_1 near subtraction semigroup.

Proposition 3.2.10. Let X be a zero symmetric near subtraction semigroup. Then X has (L, \ast) property with $XL = \{0\}$ if and only if X admits mate function and $L = \{0\}$.

Proof. For the ‘if’ part, we observe that when f is a mate function for X, $f(a)$ serves as an L-associate of a for all a in X. This guarantees that X has the (L, \ast) property. Also since $L = \{0\}$ and $X = X_0$, we get $XL = \{0\}$ trivially.

For the converse part, we first note that if f is a map from X into X with $f(a)$ serving as a choosen L-associate of a for every a in X. Then $a - af(a)a \in L$. Since X is an S-near subtraction semigroup, we have $a - af(a)a \in X(a - af(a)a) = \{0\}$. This guarantees that f is a mate function for X. Also if $a \in L$, $Xa = \{0\}$ and since $a \in Xa$, we get $L = \{0\}$. □