Chapter 3

Best Proximity Point for Mappings Satisfying Generalized contractive condition of rational type on a Metric space

3.1 Introduction

In this chapter, we introduce the notion of generalized contractive condition of a rational type and prove the existence of best proximity point in the setting of metric space which generalizes the result of Eldred and Veeramani [24] and Jaggi [36]. Let A and B be nonempty subsets of a metric space (X,d) and a map
$T : A \cup B \to A \cup B$ is called a cyclic mapping if $T(A) \subseteq B$ and $T(B) \subseteq A$.

If the fixed point equation $Tx = x$ does not possess a solution then it is natural to find an $x \in A$ satisfying

$$d(x, Tx) = d(A, B) = \inf \{d(x, y) : x \in A, y \in B\}.$$

A point $x \in A$ is called a best proximity point for T if $d(x, Tx) = d(A, B)$.

Erdred et.al [24] introduced cyclic contraction maps.

Definition 3.1.1 ([24]). Let A and B be nonempty subsets of a metric space (X, d). A map $T : A \cup B \to A \cup B$ is called a cyclic contraction if it satisfies

(i) $T(A) \subseteq B$ and $T(B) \subseteq A$;

(ii) for some $k \in (0, 1)$ we have $d(Tx, Ty) \leq kd(x, y) + (1 - k)d(A, B)$, for all $x \in A, y \in B$;

Using the concept of cyclic contraction Erdred et.al [24] proved the existence of best proximity point.

Theorem 3.1.2. [24] Let A and B be nonempty closed subsets of a metric space (X, d) and $T : A \cup B \to A \cup B$ be cyclic contraction. If either A or B is boundedly compact then there exists $x \in A \cup B$ such that $d(x, Tx) = d(A, B)$.

Jaggi [36] proved the following fixed point theorem.

Theorem 3.1.3 ([36]). Let T be a continuous self map defined on a complete metric space (X, d). Suppose that T satisfies the following contractive
condition.
\[d(Tx, Ty) \leq \frac{\alpha d(x, Tx)d(y, Ty)}{d(x, y)} + \beta d(x, y) \]
for all \(x, y \in X, x \neq y \) and for some \(\alpha, \beta \in [0, 1) \) with \(\alpha + \beta < 1 \) then \(T \) has a unique fixed point in \(X \).

In this thesis we introduce the notion of generalized contractive condition of a rational type and prove the existence of best proximity point in the setting of metric space which generalizes Theorem 3.1.2 by Eldred and Veeramani and Theorem 3.1.3 Jaggi.

3.2 Preliminaries

In this section we give some basic definitions and concepts which are useful and related to the context of our results.

Let \(A \) and \(B \) be nonempty subsets of a metric space \((X, d)\) Define

\[d(A, B) = \inf\{d(x, y) : x \in A, y \in B\} \]

Definition 3.2.1 ([24]). A subset \(K \) of a metric space \((X, d)\) is said to be boundedly compact if each bounded sequence in \(K \) has a subsequence converging to a point in \(K \).

Definition 3.2.2. Let \(A \) and \(B \) be nonempty subsets of a metric space \((X, d)\). A mapping \(T : A \cup B \to A \cup B \) is said to satisfy generalized contractive condition of a rational type if

(i) \(T(A) \subseteq B \) and \(T(B) \subseteq A \);
(ii)
\[d(Tx, Ty) \leq \frac{\alpha d(x, Tx)d(y, Ty)}{d(x, y)} + \beta d(x, Tx) + \gamma d(y, Ty) + \delta d(x, y) \]
\[+ (1 - (\alpha + \beta + \gamma + \delta))d(A, B) \]

for all \(x \in A, y \in B \) with \(\alpha + \beta + \gamma + \delta < 1 \) where \(0 \leq \alpha, \beta, \gamma, \delta < 1 \).

Note that if \(\alpha = \beta = \gamma = 0 \) then \(T \) is a cyclic contraction.

3.3 Best Proximity Theorems for Mappings Satisfying Generalized contractive condition of rational Type

First we give simple but very useful approximation result.

Proposition 3.3.1. Let \(A \) and \(B \) be nonempty subsets of a metric space \(X \). Suppose that \(T : A \cup B \to A \cup B \) is cyclic and satisfies

\[d(Tx, Ty) \leq \frac{\alpha d(x, Tx)d(y, Ty)}{d(x, y)} + \beta d(x, Tx) + \gamma d(y, Ty) + \delta d(x, y) \]
\[+ (1 - (\alpha + \beta + \gamma + \delta))d(A, B) \]

\(\forall x \in A, y \in B \) with \(\alpha + \beta + \gamma + \delta < 1 \) where \(0 \leq \alpha, \beta, \gamma, \delta < 1 \). Then for any \(x_0 \in A \cup B \) we have \(d(x_n, Tx_n) \to d(A, B) \) where \(x_{n+1} = Tx_n \), \(n = 0, 1, 2, \ldots \).
Proof.

\[d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \]
\[\leq \frac{\alpha d(x_{n-1}, Tx_{n-1})d(x_n, Tx_n)}{d(x_{n-1}, x_n)} + \beta d(x_{n-1}, Tx_{n-1}) + \gamma d(x_n, Tx_n) \]
\[+ \delta d(x_n, x_n) + (1 - (\alpha + \beta + \gamma + \delta))d(A, B) \]
\[= \alpha d(x_{n-1}, x_n)d(x_n, x_{n+1}) + \beta d(x_{n-1}, x_n) + \gamma d(x_n, x_{n+1}) \]
\[+ \delta d(x_n, x_n) + (1 - (\alpha + \beta + \gamma + \delta))d(A, B) \]
\[= (\alpha + \gamma)d(x_n, x_{n+1}) + (\beta + \delta)d(x_{n-1}, x_n) \]
\[+ (1 - (\alpha + \beta + \gamma + \delta))d(A, B) \]

Therefore,

\[d(x_n, x_{n+1}) \leq \frac{\beta + \delta}{1 - (\alpha + \gamma)}d(x_{n-1}, x_n) + (1 - \frac{\beta + \delta}{1 - (\alpha + \gamma)})d(A, B). \]

Put \(k = \frac{\beta + \delta}{1 - (\alpha + \gamma)} \) then \(k < 1 \). Therefore

\[d(x_n, x_{n+1}) \leq kd(x_{n-1}, x_n) + (1 - k)d(A, B) \]
\[= k[kd(x_{n-2}, x_{n-1}) + (1 - k)d(A, B)] + (1 - k)d(A, B) \]
\[= k^2d(x_{n-2}, x_{n-1}) + (1 - k^2)d(A, B). \]

Inductively we have,

\[d(x_n, x_{n+1}) \leq k^n d(x_0, x_1) + (1 - k^n)d(A, B) \]

As \(n \to \infty \) we obtain \(d(x_n, x_{n+1}) \to d(A, B). \]

The following result of Eldred et.al [24] is a special case of the above Proposition 3.3.1
Corollary 3.3.2. Let A and B be nonempty subsets of a metric space X. Suppose $T : A \cup B \to A \cup B$ is a cyclic contraction map. Then starting with any $x_0 \in A \cup B$ we have $d(x_n, Tx_n) \to d(A, B)$ where $x_{n+1} = Tx_n$, $n = 0, 1, 2 \cdots$.

Proposition 3.3.3. Let A and B be nonempty closed subsets of a complete metric space X. Let $T : A \cup B \to A \cup B$ be cyclic and satisfies
\[
d(Tx, Ty) \leq \frac{\alpha d(x,Tx)d(y,Ty)}{d(x,y)} + \beta d(x,Tx) + \gamma d(y,Ty) + \delta d(x,y) + (1 - (\alpha + \beta + \gamma + \delta))d(A, B)
\]
\[
\forall x \in A, y \in B \text{ with } \alpha + \beta + \gamma + \delta < 1 \text{ where } 0 \leq \alpha, \beta, \gamma, \delta < 1. \text{ Let } x_0 \in A \text{ and define } x_{n+1} = Tx_n. \text{ Suppose } \{x_{2n}\} \text{ has a convergent subsequence in } A. \text{ Then there exists } x \in A \text{ such that } d(x, Tx) = d(A, B).
\]

Proof. Let $\{x_{2n_k}\}$ be a subsequence of $\{x_{2n}\}$ converges to some $x \in A$

Then $d(A, B) \leq d(x, x_{2n_k-1}) \leq d(x, x_{2n_k}) + d(x_{2n_k}, x_{2n_k-1})$.

Thus $d(x, x_{2n_k-1}) \to d(A, B)$.

Now,
\[
d(A, B) \leq d(x_{2n_k}, Tx) \leq \frac{\alpha d(x_{2n_k-1}, Tx_{2n_k-1})d(x, Tx)}{d(x_{2n_k-1}, x)} + \beta d(x_{2n_k-1}, Tx_{2n_k-1}) + \gamma d(x, Tx) + \delta d(x_{2n_k-1}, x) + (1 - (\alpha + \beta + \gamma + \delta))d(A, B)
\]

Taking limit as $n \to \infty$ we get
\[d(A, B) \leq d(x, Tx) \leq \frac{\alpha d(A, B)d(x, Tx)}{d(A, B)} + \beta d(A, B) + \gamma d(x, Tx) + \delta d(A, B) + (1 - (\alpha + \beta + \gamma + \delta))d(A, B)\]

That is

\[d(A, B) \leq d(x, Tx) \leq (\alpha + \gamma)d(x, Tx) + (1 - (\alpha + \gamma))d(A, B) \quad (3.3.1)\]

From (3.3.1) \(d(x, Tx) \leq (\alpha + \gamma)d(x, Tx) + (1 - (\alpha + \gamma))d(A, B)\) we have

\[(1 - (\alpha + \gamma))d(x, Tx) \leq (1 - (\alpha + \gamma))d(A, B)\]

\[d(x, Tx) \leq d(A, B) \quad (3.3.2)\]

From (3.3.1) and (3.3.2) we get \(d(A, B) \leq d(x, Tx) \leq d(A, B)\).
Thus \(d(x, Tx) = d(A, B)\).

The following result of Jaggi [36] is a special case of the above Proposition 3.3.3.

Corollary 3.3.4. Let \(T\) be a continuous self map defined on a complete metric space \((X, d)\). Suppose that \(T\) satisfies the following contractive condition.

\[d(Tx, Ty) \leq \frac{\alpha d(x, Tx)d(y, Ty)}{d(x, y)} + \beta d(x, y)\]

for all \(x, y \in X, x \neq y\) and for some \(\alpha, \beta \in [0, 1)\) with \(\alpha + \beta < 1\) then \(T\) has a unique fixed point in \(X\).

Proof. Let \(A = B = X \Rightarrow A \cup B = X\). Then \(T\) is cyclic map. Define \(x_{n+1} = Tx_n\). Then \(\{x_n\}\) is a convergent sequence in \(A\) and hence \(\{x_{2n}\}\) is a
convergent sequence in A. Then by Proposition 3.3.3 there exists $x \in A$ such that $d(x, Tx) = d(A, B) = 0$. Therefore $Tx = x$.

The following result of Eldred et.al [24] is a special case of the above Proposition 3.3.3

Corollary 3.3.5. Let A and B be nonempty closed subsets of a complete metric space X. Let $T : A \cup B \to A \cup B$ be cyclic contraction map. Let $x_0 \in A$ and define $x_{n+1} = Tx_n$. Suppose $\{x_{2n}\}$ has a convergent subsequence in A. Then there exists $x \in A$ such that $d(x, Tx) = d(A, B)$.

Proposition 3.3.6. Let A and B be nonempty subsets of a metric space X.

Let $T : A \cup B \to A \cup B$ be cyclic and satisfies

$$d(Tx, Ty) \leq \frac{\alpha d(x, Tx)d(y, Ty)}{d(x, y)} + \beta d(x, Tx) + \gamma d(y, Ty) + \delta d(x, y) + (1 - (\alpha + \beta + \gamma + \delta))d(A, B)$$

$\forall x \in A, y \in B$ with $\alpha + \beta + \gamma + \delta < 1$ where $0 \leq \alpha, \beta, \gamma, \delta < 1$. Then for any $x_0 \in A \cup B$ and $x_{n+1} = Tx_n, n = 0, 1, 2, \cdots$ the sequences $\{x_{2n}\}$ and $\{x_{2n+1}\}$ are bounded.

Proof. Suppose $x_0 \in A$ (the proof when $x_0 \in B$ is similar) Since by Proposition 3.3.1 $d(x_{2n}, x_{2n+1})$ converges to $d(A, B)$. So it is enough to prove that $\{x_{2n+1}\}$ is bounded.

Suppose $\{x_{2n+1}\}$ is not bounded then there exists N_0 such that $d(T^2x_0, T^{2N_0+1}x_0) > M$ and $d(T^2x_0, T^{2N_0-1}x_0) \leq M$ where
\[M > \max \left\{ \frac{2d(x_0, Tx_0)}{k^2 - 1} + d(A, B), d(T^2 x_0, Tx_0) \right\} \] and \[k = \frac{\beta + \delta}{1 - (\alpha + \gamma)}. \]

\[M < d(T^2 x_0, T^{2N_0+1} x_0) \]
\[\leq kd(Tx_0, T^{2N_0} x_0) + (1 - k)d(A, B) \]
\[\leq k[d(x_0, T^{2N_0-1} x_0) + (1 - k)d(A, B)] + (1 - k)d(A, B) \]
\[= k^2 d(x_0, T^{2N_0-1} x_0) + (1 - k^2)d(A, B) \]

Therefore
\[\frac{M - d(A, B)}{k^2} + d(A, B) < d(x_0, T^{2N_0-1} x_0) \]
\[\leq d(x_0, T^2 x_0) + d(T^2 x_0, T^{2N_0} x_0) \]
\[\leq d(x_0, T^2 x_0) + M \]
\[\leq d(x_0, Tx_0) + d(Tx_0, T^2 x_0) + M \]
\[\leq 2d(x_0, Tx_0) + M \]

Thus \(M < \frac{2d(x_0, Tx_0)}{k^2 - 1} + d(A, B) \) which is a contradiction.

\textbf{Corollary 3.3.7.} Let \(A \) and \(B \) be nonempty subsets of a metric space \(X \). Let \(T : A \cup B \rightarrow A \cup B \) be cyclic contraction map. Then for \(x_0 \in A \cup B \) and define \(x_{n+1} = Tx_n, n = 0, 1, 2 \cdots \) the sequences \(\{x_{2n}\} \) and \(\{x_{2n+1}\} \) are bounded.

\textbf{Theorem 3.3.8.} Let \(A \) and \(B \) be nonempty closed subsets of a metric space \(X \). Let \(T : A \cup B \rightarrow A \cup B \) be cyclic contraction map and satisfies
\[d(Tx, Ty) \leq \frac{\alpha d(x, Tx)d(y, Ty)}{d(x, y)} + \beta d(x, Tx) + \gamma d(y, Ty) + \delta d(x, y) \]
\[+ (1 - (\alpha + \beta + \gamma + \delta))d(A, B) \]
for all $x \in A, y \in B$ with $\alpha + \beta + \gamma + \delta < 1$ where $0 \leq \alpha, \beta, \gamma, \delta < 1$. If either A or B is boundedly compact then there exists $x \in A \cup B$ such that $d(x, Tx) = d(A, B)$.

Proof. Suppose A is boundedly compact. Let $x_0 \in A$ and $x_{n+1} = Tx_n$. By Proposition 3.3.6 $\{x_{2n}\}$ is bounded. Since A is boundedly compact we have $\{x_{2n}\}$ has a subsequence converges to a point in A. By Proposition 3.3.3 there exists $x \in A$ such that $d(x, Tx) = d(A, B)$. Similarly we can prove when B is boundedly compact. This completes the proof. \[\Box\]

The following result of Eldred et.al [24] is a special case of the above Theorem 3.3.8

Corollary 3.3.9. Let A and B be nonempty closed subsets of a metric space X. Let $T : A \cup B \to A \cup B$ be cyclic contraction map. If either A or B is boundedly compact then there exists $x \in A \cup B$ such that $d(x, Tx) = d(A, B)$.

46