THE EDGE-TO-VERTEX DETOUR NUMBER AND EDGE-TO-EDGE DETOUR NUMBER OF GRAPH

Theorem 3.21. For a connected graph G of size q, $2 \leq d_{ev}(G) \leq d_{ee}(G) \leq q$.

Proof. Any edge-to-vertex detour set needs at least two edges and therefore $d_{ev}(G) \geq 2$.

Let S be an edge-to-edge detour set. Then every edge of G is either an element or lies on a detour joining a pair of edge of S. Also every edge-to-edge detour set is an edge-to-vertex detour set of G and then $d_{ev}(G) \leq d_{ee}(G)$. Clearly the set of all edges of G is an edge-to-edge detour set of G so that $d_{ee}(G) \leq q$. Thus $2 \leq d_{ev}(G) \leq d_{ee}(G) \leq q$. ■

Remark 3.22. The bounds in Theorem 3.21 are sharp. The set of the two end edges of a path P_p ($p \geq 2$) is its unique edge-to-vertex detour set so that $d_{ev}(G) = 2$. For the cycle C_p, $d_{ev}(G) = d_{ee}(G) = 2$, for the star $G = K_1,q$, ($q \geq 2$), $d_{ee}(G) = q$. Also, the inequalities in the theorem can be strict. For the graph G, given in the Figure 3.7 $d_{ev}(G) = 2$, $d_{ee}(G) = 3$.

![Figure 3.7](image)

In the view of Theorem 3.21, we have the following realization result.
Theorem 3.23. For every two positive integers \(a \) and \(b \) with \(2 \leq a \leq b \), there exists a connected graph \(G \) with \(d_{ev}(G) = a \) and \(d_{ee}(G) = b \).

Proof. Let \(G \) be a tree with \(a \) end edges. Then by Theorem 1.56, \(d_{ev}(G) = a \) and by Corollary 3.13, \(d_{ee}(G) = a \). Therefore by taking \(a = b \), the theorem is proved. For \(2 \leq a < b \), let \(P: u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8 \) be a path of order eight. Let \(G \) be the graph obtained from \(P \) by adding new vertices \(z_1, z_2, \ldots, z_{a-1} \) and \(w_1, w_2, \ldots, w_{b-a} \) and joining each \(z_i \) (\(1 \leq i \leq a-1 \)) with \(u_6 \) and each \(w_i \) (\(1 \leq i \leq b-a \)) with \(u_1 \) and \(u_7 \). The graph \(G \) is given in Figure 3.8. Let \(Z = \{u_6z_1, u_6z_2, \ldots, u_6z_{a-1}, u_7u_8\} \) be the set of all pendant edges of \(G \). By Theorem 1.55, \(Z \) is a subset of every edge-to-vertex detour set of \(G \). It is clear that \(Z \) is an edge-to-vertex detour set of \(G \) so that \(d_{ev}(G) = a \). By Corollary 3.11, \(Z \) is a subset of every edge-to-edge detour set of \(G \). It is easily verified that \(Z \) is not an edge-to-edge detour set of \(G \). It is easily observed that \(u_6w_i(1 \leq i \leq b-a) \) is a subset of every edge-to-edge detour set of \(G \) and so \(d_{ee}(G) \geq a + b - a = b \). Let \(W = \{u_6w_1, u_6w_2, \ldots, u_6w_{b-a}\} \). Now \(S = Z \cup W \) is an edge-to-edge detour set of \(G \) and so that \(d_{ee}(G) = b \).
Definition 3.24. An edge-to-edge detour set S in a connected graph G is called a minimal edge-to-edge detour set if no proper subset of S is an edge-to-edge detour set of G. The upper edge-to-edge detour number is denoted by $d^{+}_{ee}(G)$ is maximum cardinality of a minimal edge-to-edge detour set of G.

Example 3.25. For the graph G given in Figure 3.9, $S_1 = \{v_1, v_4\}$, $S_2 = \{v_4, v_6\}$, $S_3 = \{v_4, v_7\}$, $S_4 = \{v_2, v_4, v_5\}$ are the only minimal edge-to-edge detour sets of G so that the $d^{+}_{ee}(G) = 3$.
Remark 3.26. Every minimum edge-to-edge detour set of G is a minimal edge-to-edge detour set of G. The converse is not true.

Theorem 3.27. For a connected graph G, $2 \leq d_{ee}(G) \leq d^+_{ee}(G) \leq q$.

Proof: It is enough to prove $d_{ee}(G) \leq d^+_{ee}(G)$. Since every minimal edge-to-edge detour set is also an edge-to-edge detour set, $d_{ee}(G) \leq d^+_{ee}(G)$. Thus $2 \leq d_{ee}(G) \leq d^+_{ee}(G) \leq q$.

Corollary 3.28. For any non-trivial tree T with k end-vertices, $d^+_{ee}(T) = k$ and the set of all k end-edges of T is the unique minimal edge-to-edge detour set of T.

Proof: Let S be the set of all end edges of T. Then by Theorem 3.11, S is a subset of every edge-to-edge detour set of T. Hence $d^+_{ee}(T) \leq k$, then it follows from the Theorem 3.11 that $d^+_{ee}(T) = k$.

Theorem 3.29. For the cycle $C_p (p \geq 6)$, $d^+_{ee}(C_p) = 3$.

Proof: Let C_p: $v_1, v_2, v_3, v_4, \ldots, v_p$ be the cycle. Let $S = \{v_1, v_2, v_3, v_4, v_{p-1}, v_p\}$. Then S is an edge-to-edge detour set of G. Since no proper subset of S is an edge-to-edge detour set of G, S is a minimal edge-to-edge detour set of G so that $d^+_{ee}(G) \geq 3$. We show that
\(d_{ee}^+(G) = 3\). Suppose that \(d_{ee}^+(G) > 3\), then there exists a minimal edge-to-edge detour set \(M\) such that \(|M| \geq 4\). Since any two adjacent edges of \(G\) is a detour set of \(G\), it follows that \(M\) contains no adjacent edges. Then \(M\) contains at least three non-adjacent edges. Hence \(M\) is not a minimal edge-to-edge detour set of \(G\). Therefore \(d_{ee}^+(G) = 3\).

\[\square\]

Corollary 3.30. For the graph \(K_p (p \geq 2)\), \(d_{ee}^+(K_p) = 2\).

Proof: Let \(K_p: v_1, v_2, v_k, v_{k+1}, \ldots, v_p\) be the graph. Since any two adjacent edges of \(G\) is an edge-to-edge detour set, it follows that \(d_{ee}^+(K_p) = 2\).

\[\square\]

Theorem 3.31. For a connected graph \(G\), \(d_{ee}(G) = q\) if and only if \(d_{ee}^+(G) = q\).

Proof. Let \(d_{ee}^+(G) = q\). Then \(S = E(G)\) is the unique minimal edge-to-edge detour set of \(G\). Since no proper subset of \(S\) is an edge-to-edge detour set, it is clear that \(S\) is the unique minimum edge-to-edge detour set of \(G\) and so \(d_{ee}(G) = q\). The converse follows from Theorem 2.51.

\[\square\]

Corollary 3.32. For a connected graph the following are equivalent.

\[i) \quad d_{ee}(G) = q\]
\[ii) \quad d_{ee}^+(G) = q\]
\[iii) \quad G\ is\ a\ star\]

Proof: This follows from Theorems 3.21, 3.31.

\[\square\]

Theorem 3.33. For any positive integers \(a\) and \(b\), \(2 \leq a \leq b\) there exists a connected graph \(G\) such that \(d_{ee}(G) = a\) and \(d_{ee}^+(G) = b\).
Proof: Let $P: v_1, v_2, v_3, v_4, v_5$ be path of length 4. Add new vertices $y, w_1, w_2, ..., w_{a-2}, u_1, u_2, ..., u_{b-a+1}$ to P and join $w_1, w_2, ..., w_{a-2}$ to v_5 and joining $u_1, u_2, ..., u_{b-a+1}$ to both v_2 and v_5. Therefore by producing a graph G of Figure 3.10. Let $S = \{v_1 v_2, v_5 w_1, v_5 w_2, ... v_5 w_{a-2}\}$. By Theorem 3.11, S is a subset of every edge-to-edge detour set of G. It is clear that S is not an edge-to-edge detour set of G and so $d_{ee}(G) \geq a$. It is clear that $S \cup \{v_4 v_5\}$ is an edge-to-edge detour set of G so that $d_{ee}(G) = a$. Now $S_1 = S \cup \{v_5 u_1, v_5 u_2, ..., v_5 u_{b-a}\}$ is an edge-to-edge detour set of G. Now we show that S_1 is a minimal edge-to-edge set of G. Assume, to the contrary, that S_1 is not a minimal edge-to-edge set of G. Then there is a proper subset T of S_1 such that T is an edge-to-edge set of G. Let $e \in S_1$ such that $e \notin T$. By Corollary 3.11, it is clear that $e \neq v_5 w_i$, $i = 1, 2, 3, ..., a - 2$. Therefore $e = v_5 u_i$ for some $i = 1, 2, 3, ..., u_{b-a}$. Clearly, this e does not lie on a detour joining of a pair of edges of T and so T is not an edge-to-edge detour set of G, which is a contradiction. Thus S_1 is a minimal edge-to-edge detour set of G so that $d_{ee}(G) \geq b$. Suppose that there exists a minimal edge-to-edge detour set T' such that $|T'| \geq b + 1$. Then it is easily verified that T containing either S or S_1. Therefore T' is not a minimal-edge-to-edge detour set of G, which is a contradiction. Therefore $d_{ee}(G) = b$. **
FORCING EDGE-TO-EDGE DETOUR NUMBER OF A GRAPH

The Forcing edge-to-edge detour number of a Graph

Even though every connected graph contains a minimum edge-to-edge detour set, some connected graph may contain several minimum edge-to-edge detour sets. For each minimum edge-to-edge detour set S in a connected graph G, there is always some subset T of S that uniquely determines S as the minimum edge-to-edge detour set containing T. Such “forcing subsets” will be considered in this section.

Definition 3.34. Let G be a connected graph and S a minimum edge-to-edge detour set of G. A subset T ⊆ S is called a forcing subset for S if S is the unique minimum edge-to-edge detour basis set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing edge-to-edge detour number of S, denoted by $f_{dee}(S)$, is the cardinality of a minimum forcing subset of S. The forcing edge-to-edge detour number of G, denoted by $f_{dee}(G)$ is defined as $f_{dee}(G) = \min\{ f_{dee}(S) \}$ where the minimum is taken over all minimum edge-to-edge detour sets S in G.
Example 3.35 For the graph G given in Figure 3.11, $S_1=\{v_1v_2, v_2v_3\}$, $S_2=\{v_1v_2, v_2v_6\}$, $S_3=\{v_1v_2, v_4v_5\}$, are the only three edge-to-edge detour set of G so that $d_{ee}(G) = 2$ such that $f_{dec}(S_1) = f_{dec}(S_2) = f_{dec}(S_3) = 1$ so that $f_{dec}(G) = 1$.

Theorem 3.36. Let G be a connected graph. Then

a) $f_{dec}(G) = 0$ if and only if G has a unique minimum edge-to-edge detour set

b) $f_{dec}(G) = 1$ if and only if G has at least two minimum edge-to-edge detour sets, one of which is a unique minimum edge-to-edge detour set containing one of its elements, and

c) $f_{dec}(G) = d_{ee}(G)$ if and only if no minimum edge-to-edge detour set of G is unique minimum edge-to-edge detour set containing any of its proper subsets.

Proof. (a) Let $f_{dec}(G) = 0$. Then, by definition, $f_{dec}(S) = 0$ for some minimum edge-to-edge detour set S of G so that the empty set ϕ is the minimum forcing subset for S.

Since the empty set ϕ is a subset of every set, it follows that S is the unique minimum edge-to-edge detour set of G. The converse is clear.
(b) Let $f_{\text{det}}(G) = 1$. Then by Theorem 3.36(a) G has at least two minimum edge-to-edge detour sets. Also, since $f_{\text{det}}(G) = 1$, there is a singleton subset T of a minimum edge-to-edge detour set S of G such that T is not a subset of any other minimum edge-to-edge detour set of G. Thus S is the unique minimum edge-to-edge detour set containing one of its elements. The converse is clear.

(c) Let $f_{\text{det}}(G) = d_{ee}(G)$. Also by Theorem 3.6, $d_{ee}(G) \geq 2$ and hence $f_{\text{det}}(G) \geq 2$. Then by Theorem 3.36(a), G has at least two minimum edge-to-edge detour sets and so the empty set \emptyset is not a forcing subset for any edge-to-edge detour basis of G. Since $f_{\text{det}}(G) = d_{ee}(G)$, no proper subsets of S is a forcing subset of S. Thus no minimum edge-to-edge detour set of G is the unique minimum edge-to-edge detour set containing any of its proper subsets.

Conversely, the hypothesis implies that G contains more than one edge-to-edge detour basis and no subset of any minimum edge-to-edge detour set S other than S is a forcing subset for S. Hence it follows that $f_{\text{det}}(G) = d_{ee}(G)$. ■

Definition 3.37. An edge e of G is said to be an edge-to-edge detour of edge of G, if e belongs to every minimum edge-to-edge detour set of G.

Example 3.38. For the graph G given in Figure 3.12, The sets $S_1 = \{v_4v_5, v_5v_6\}$ and $S_2 = \{v_2v_3, v_5v_6\}$ are the only two minimum edge-to-edge detour set of G so that v_5v_6 is a minimum edge-to-edge detour set of G.
Theorem 3.39. Let G be a connected graph and let \mathcal{F} be the set of relative complements of the minimum forcing subsets in their respective edge-to-edge detour bases in G. Then $\bigcap_{F \in \mathcal{F}} F$ is the set of edge-to-edge detour edges of G.

Proof. Proof is similar to that of Theorem 2.62

Corollary 3.40. Let G be a connected graph and S be a minimum edge-to-edge detour set of G. Then no edge-to-edge detour edge of G belongs to any minimum forcing set of S.

Theorem 3.41. Let G be a connected graph and W be the set of all edge-to-edge detour edge of G. Then $f_{\text{de}}(G) \leq d_{\text{ee}}(G) - |W|$.

Proof. Let S be any minimum edge-to-edge detour set of G. Then $d_{\text{ee}}(G) = |S|$, $W \subseteq S$ and S is the unique minimum edge-to-edge detour set containing $S - W$. Thus $f_{\text{de}}(G) \leq |S - W| = |S| - |W| = d_{\text{ee}}(G) - |W|$.

Theorem 3.42.

i) For any cycle C_p ($p \geq 4$), $f_{\text{de}}(C_p) = 1$.

ii) For any complete graph $G = K_p$ ($p \geq 2$), $f_{\text{de}}(G) = 2$.

iii) For any non-trivial tree $G = T, f_{\text{dee}}(G) = 0$.

Proof. (i) Let e, f be two adjacent edges of G. Then $S = \{e, f\}$ is a minimum *edge-to-edge detour* set of C_p so that $f_{\text{dee}}(C_p) = 2$. Since S is not a unique minimum *edge-to-edge detour* set of C_p containing either e or f, it follows that $f_{\text{dee}}(C_p) = 2$.

(ii) By the similar way as in the first part of Theorem 3.42 we can prove $f_{\text{dee}}(G) = 2$.

(iii) Let $G = T$ be any tree. Then the set of end edges of G is the unique *edge-to-edge* detour set of G. Hence it follows from Theorem 3.36 (a) that $f_{\text{dee}}(G) = 0$. \blacksquare

Theorem 3.43. For every pair a, b of integers with $0 \leq a < b$, $b \geq 2$ and $b - a - 1 > 0$, there exists a connected graph G such that $f_{\text{dee}}(G) = a$ and $d_{ce}(G) = b$.

Proof. Let $P: x, v_1, v_2, v_3, v_4$ be a path of length 4. Let H be a graph obtained from P by adding new vertices $u_1, u_2, ..., u_a$ and joining u_i with v_1 and v_4 $(1 \leq i \leq a)$. Let G be a graph obtained from H by adding new vertices $z_1, z_2, z_3, ..., z_{b-a-1}$ by joining each $z_i (1 \leq i \leq b - a - 1)$ with v_4. The graph G is shown in Figure 3.13. Let $Z = \{xv_1, v_4z_1, v_4z_2, v_4z_3, ..., v_4z_{b-a-1}\}$ be the set of all end edges of G. Then Z is not a *edge-to-edge* detour set of G. Let $H_i = \{v_1u_i, v_4u_i\}; (1 \leq i \leq a)$ Then it is easily observed that every *edge-to-edge* detour set of G contains at least one edge from each $H_i (1 \leq i \leq a)$ and so $d_{ce}(G) \geq b - a + a = b$. Now $S = Z \cup \{u_1v_1, u_2v_1, ..., u_av_1\}$ is an *edge-to-edge* detour set of G so that $d_{ce}(G) = b$.

Next we show that $f_{\text{dee}}(G) = a$. Since every d_{ce}-set of G contains Z, it follows from Theorems 3.11 and 3.41 that $f_{\text{dee}}(G) \leq d_{ce}(G) - |Z| = b - (b - a) = a$. Now since $d_{ce}(G) = b$ and every u_i, d_{ce}-set of G contains Z, it is easily seen that every d_{ce}-set S is of the form $Z \cup \{c_1, c_2, c_3, ..., c_a\}$ where $c_i \in H_i (1 \leq i \leq a)$. Let T be any proper subset
of S with $|T| < a$. Then there is a vertex c_j ($1 \leq j \leq a$) such that $c_j \notin T$. Let f_j be an edge of H_j distinct from c_j. Then $S_2 = [S-\{c_j\} \cup \{f_j\}]$ is a d_{ee}-set of G properly containing T. Thus S is not the unique d_{ee}-set containing T. Thus T is not a forcing subset of S. This is true for all d_{ee}-sets of G and it follows that $f_{d_{ee}}(G) = a$.

Figure 3.13

THE EDGE-TO-EDGE GEODETIC NUMBER AND THE EDGE-TO-EDGE DETOUR NUMBER OF A GRAPH

Remark 3.44. There is no relationship between the edge-to-edge geodetic number and the edge-to-edge detour number of a graph.

Example 3.45. For the cycle $G = C_5$, $d_{ee}(G) = 2$ and $g_{ee}(G) = 3$ and so $d_{ee}(G) < g_{ee}(G)$. Also for the graph G given in the Figure 3.14, $S_1 = \{v_1v_2, v_1v_9, v_4v_5\}$ is a minimum edge-to-edge geodetic set of G so that $g_{ee}(G) = 3$ and $S_2 = \{v_4v_5, v_4v_6, v_4v_7, v_4v_8\}$ is a minimum edge-to-edge detour set of G so that $d_{ee}(G) = 4$ and so $d_{ee}(G) > g_{ee}(G)$. So we have the following realization results.
Theorem 3.46. For every pair of positive integers with \(2 \leq a \leq b\), there exists a connected graph \(G\) such that \(d_{ee}(G) = a\) and \(g_{ee}(G) = b\).

Proof. Case 1. \(a = b\)

Let \(G\) be a star with \(a\) pendant edges. Then by Corollary 3.13, \(d_{ee}(G) = a\). Also by Corollary 2.17, \(g_{ee}(G) = a\).

Case 2. \(2 \leq a < b\)

Let \(G\) be a graph obtained from the path on four vertices \(P : x_1, x_2, x_3, x_4\) by adding \(a - 1\) new vertices \(v_1, v_2, \ldots, v_{a-1}\) and joining each \(v_i (1 \leq i \leq a - 1)\) with \(x_4\).

Also adding \(b - a\) new vertices \(w_1, w_2, \ldots, w_{b-a}\) and joining each \(w_i (1 \leq i \leq b - a)\) with \(x_2, x_3\) and \(x_4\). The graph \(G\) is shown in Figure 3.15. First show that \(d_{ee}(G) = a\). Let \(Z = \{x_1x_2, v_1x_4, v_2x_4, \ldots, v_{a-1}x_4\}\) be the set of all pendant edges of \(G\). By Theorem 3.11, \(Z\) is a subset of every edge-to-edge detour set of \(G\) and so \(d_{ee}(G) \geq a\). It is clear that \(Z\) is an edge-to-edge detour set of \(G\) so that \(d_{ee}(G) = a\). Next show that \(g_{ee}(G) = b\). By Corollary 2.13, \(Z\) is a subset of every edge-to-edge geodetic set of \(G\). It is clear that \(Z\)
is not an edge-to-edge geodetic set of G. It is easily verified that every edge-to-edge geodetic set of G contains $x_3 w_i$ ($1 \leq i \leq b - a$) and so $g_{ee}(G) \geq a + b - a = b$. Let $S = Z \cup \{x_3 w_1, x_3 w_2, \ldots, x_3 w_{b-a}\}$. Then S is an edge-to-edge geodetic set of G so that $g_{ee}(G) = b$. Hence the proof.

\[\Box\]

Theorem 3.47. For every pair of positive integers with $4 \leq a < b$, there exists a connected graph G such that $g_{ee}(G) = a$ and $d_{ee}(G) = b$.

Proof. Let G be a graph obtained from the cycle $C_6 : x_1, x_2, x_3, x_4, x_5, x_6, x_1$ by adding $a - 2$ new vertices $z_1, z_2, \ldots, z_{a-2}$ and joining each z_i ($1 \leq i \leq a - 2$) with x_4. Also adding $b - a + 2$ new vertices $w_1, w_2, \ldots, w_{b-a+2}$ and joining each w_i ($1 \leq i \leq b - a + 2$) with x_1 and x_4. The graph G is shown in Figure 3.16. First show that $g_{ee}(G) = a$. Let $Z = \{z_1 x_4, z_2 x_4, \ldots, z_{a-2} x_4\}$ be the set of all pendant edges of G. By Theorem 2.13, Z is a subset of every edge-to-edge geodetic set of G and so $g_{ee}(G) \geq a - 1$. It is clear that Z is not an edge-to-edge geodetic set of G. It is easily verified that $Z \cup \{h\}$, where $h \notin Z$ is not an edge-to-edge geodetic set of G and so $g_{ee}(G) \geq a$. However $Z \cup \{x_1 x_2, x_3 x_5\}$ is an
edge-to-edge geodetic set of G so that $g_{ee}(G) = a$. Next show that $d_{ee}(G) = b$. By Theorem 3.11, Z is a subset of every edge-to-edge detour set of G. It is clear that Z is not an edge-to-edge detour set of G. It is easily verified that every edge-to-edge detour set of G contains x_iw_i ($1 \leq i \leq b - a + 2$) and so $d_{ee}(G) \geq a - 2 + b - a + 2 = b$.

Let $W = Z \cup \{x_iw_1, x_iw_2, \ldots, x_iw_{b-a+2}\}$. Then W is an edge-to-edge detour set of G so that $d_{ee}(G) = b$. Hence the proof.

Figure 3.16
CHAPTER – 4

THE EDGE FIXING EDGE-TO-EDGE GEODETIC NUMBER OF A GRAPH

In this Chapter we introduce the concept of edge fixing edge-to-edge geodetic number of a graph and some general properties satisfied by this concept are studied. The edge fixing edge-to-edge geodetic number of some standard graphs is determined. Connected graph G of size q with edge fixing edge-to-edge geodetic number $q - 1$ or $q - 2$ is characterized. It is shown that, for every positive integers r, d and $l \geq 2$ with $r \leq d \leq 2r$, there exists a connected graph G with $\text{rad}(G) = r$, $\text{diam}(G) = d$ and $g_{efee}(G) = l$ or $l - 1$ for all $e \in E(G)$. It is also shown that, for every positive integers a and b with $2 \leq a \leq b \leq q - 1$, there exists a connected graph G of size q, $g_{ce}(G) = a$ and $g_{efee}(G) = b$ for some $e \in E(G)$.

Definition 4.1. Let e be an edge of a graph G. A set $S(e) \subseteq E(G) - \{e\}$ is called an *edge fixing edge-to-edge geodetic set* of a connected graph G if every edge of G lies on an $e - f$ geodesic, where $f \in S(e)$. The *edge fixing edge-to-edge geodetic number* $g_{efee}(G)$ of G is the minimum cardinality of its edge fixing edge-to-edge geodetic sets and any edge fixing edge-to-edge geodetic set of cardinality $g_{efee}(G)$ is an g_{efee}-set of G.

Example 4.2. For the graph G given in Figure 4.1, the edge fixing edge-to-edge geodetic sets of each edge of G is given in the following Table 4.1.
Table 4.1

<table>
<thead>
<tr>
<th>Fixing Edge (e)</th>
<th>Minimum edge fixing edge-to-edge geodetic sets ($S(e)$)</th>
<th>$g_{e,\text{free}}(S(e))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1v_2</td>
<td>${v_3v_6}$</td>
<td>1</td>
</tr>
<tr>
<td>v_2v_3</td>
<td>${v_1v_2, v_3v_6, v_6v_7}$</td>
<td>3</td>
</tr>
<tr>
<td>v_3v_4</td>
<td>${v_1v_2, v_6v_7, v_7v_8}$</td>
<td>3</td>
</tr>
<tr>
<td>v_4v_5</td>
<td>${v_1v_2, v_7v_8, v_2v_8}$</td>
<td>3</td>
</tr>
<tr>
<td>v_3v_6</td>
<td>${v_1v_2}$</td>
<td>1</td>
</tr>
<tr>
<td>v_6v_7</td>
<td>${v_1v_2, v_2v_3, v_3v_4}$</td>
<td>3</td>
</tr>
<tr>
<td>v_7v_8</td>
<td>${v_1v_2, v_4v_5, v_3v_4}$</td>
<td>3</td>
</tr>
<tr>
<td>v_8v_2</td>
<td>${v_1v_2, v_4v_5, v_3v_6}$</td>
<td>3</td>
</tr>
</tbody>
</table>
Remark 4.3. For a connected graph G, the edge e of G does not belong to the edge fixing edge-to-edge geodetic set $S(e)$.

Theorem 4.4. For an edge e in G, the g_{efee} set is unique.

Proof. Let e be an edge of G. Suppose there are two g_{efee} sets, say S_1 and S_2. Let f be an edge of G such that $f \in S_1$ and $f \notin S_2$. Since S_2 is a g_{efee} set and $|S_1| = |S_2|$, hence there exists an edge $h \neq f$ in G such that $h \notin S_2$ and $h \in S_1$. Since S_1 is a g_{efee} set and $h \notin S_1$, there exists an edge g in S_1 such that h lies on an $e - g$ geodesic.

Case (i): Suppose $g \in S_2$.

Since h is an internal edge of an $e - g$ geodesic and S_2 is a g_{efee} set, $h \notin S_2$, which is a contradiction to $h \in S_2$.

Case (ii): Suppose $g \notin S_2$.

Since S_2 is a g_{efee} set, there exists an edge $y \notin S_2$ such that g lies on an $e - y$ geodesic, say P. From (1), h lies on an $e - g$ geodesic, say Q. Then combining Q and P, $e - g$ and $g - y$ section of the geodesic, P is an $e - y$ geodesic. Thus h is an internal edge of an $e - y$ geodesic. Since S_2 is a g_{efee} set, $h \notin S_2$, which is a contradiction to $h \in S_2$. Therefore g_{efee} set of e of G is unique.

Theorem 4.5. Let e be an edge of G. Let v be an extreme vertex of a connected graph G such that v is not incident with e. Then every edge fixing edge-to-edge geodetic set e of G contains at least one extreme edge that is incident with v.

Proof. Let e be an edge of G and let v be an extreme vertex of G such that v is not incident with e. Let e_1, e_2, \ldots, e_k be the edges incident with v and let $S(e)$ be any edge
fixing edge-to-edge geodetic set of e of G. We claim $e_i \in S(e)$ for some i $(1 \leq i \leq k)$. If not, $e_i \notin S(e)$ for all i $(1 \leq i \leq k)$. Since $S(e)$ is an edge fixing edge-to-edge geodetic set of e of G, the vertex v lies on the $e – f$ geodesic joining the edges e and $f \in S(e)$. Since v is an internal vertex of a geodesic $e – f$, v is not an extreme vertex of G, which is a contradiction. Hence $e_i \in S(e)$ for some i $(1 \leq i \leq k)$. □

Corollary 4.6. Every end–edge (other than the fixed edge) of a connected graph G belongs to every edge fixing edge-to-edge geodetic set of an edge e of G.

Theorem 4.7. Let G be a connected graph and $S(e)$ be an edge fixing edge-to-edge geodetic set of e of G. Let f be a non–pendant cut edge of G and let G_1 and G_2 be the two component of $G – \{f\}$.

If $e = f$, then each of the two component of $G – \{f\}$ contains an element of $S(e)$.

If $e \neq f$, then $S(e)$ contains at least one edge of component of $G – \{f\}$ where e does not lie.

Proof. Let $f = uv$. Let G_1 and G_2 be the two component of $G – \{f\}$ such that $u \in V(G_1)$ and $v \in V(G_2)$.

Let $e = f$. Suppose that $S(e)$ does not contain any element of G_1. Then $S(e) \subseteq E(G_2)$. Let h be an edge of $E(G_1)$. Then h must lie in $e – f$ geodesic P. Since $e = f$, P must be a cycle containing h and $e (=f)$. This is a contradiction since f is a cut edge that does not lie on any cycle. Hence each of the two component of $G – \{f\}$ contains an element of $S(e)$.

By similar argument, we can prove that if $e \neq f$, then $S(e)$ contains at least one edge of component of $G – \{f\}$ where e does not lie. □
Theorem 4.8. Let G be a connected graph and $S(e)$ be a minimum edge fixing edge-to-edge geodetic set of an edge e of G. Then no non–pendant cut-edge of G belongs to $S(e)$.

Proof. Let $S(e)$ be an edge fixing edge-to-edge geodetic set of an edge $e = uv$ of G. Let $f = u'v'$ be a pendant cut-edge of G such that $f \in S(e)$. Then $e \neq f$. Let G_1 and G_2 be the two components of $G - \{f\}$ such that $u' \in V(G_1)$ and $v' \in V(G_2)$. By Theorem 4.7, G_1 contains an edge xy and G_2 contains an edge $x'y'$ where $xy, x'y' \in S(e)$. Let $S'(e) = S(e) - \{f\}$. We claim that $S'(e)$ is an edge fixing edge-to-edge geodetic set of an edge e of G.

Case 1. Suppose that xy is an edge in G_1 and $x'y'$ is an edge in G_2. Let z be any vertex of G. Assume without loss of generality that z belongs to G_1. Since $u'v'$ is a cut-edge of G, every path joining a vertex of G_1 with a vertex of G_2 contains the edge $u'v'$. Suppose that z is incident with $u'v'$ or the edge xy of $S(e)$ or that lies on a geodesic joining xy and $u'v'$. If z is incident with $u'v'$, then $z = u'$. Let $P: y, y_1, y_2, ..., z = u'$ be a $xy - u'v'$ geodesic. Let $Q: v', v_1', v_2', ..., y'$ be a $u'v' - x'y'$ geodesic. Then, it is clear that $P \cup \{u'v'\} \cup Q$ is a $xy - x'y'$ geodesic. Thus z lies on the $xy - x'y'$ geodesic. If z is incident with xy, then there is nothing to prove. If z lies on a $xy - x'y'$ geodesic, say $y, v_1, v_2, ..., z, ..., u'$, then let $v', v_1', v_2', ..., y'$ be $u'v' - x'y'$ geodesic. Then clearly $y, v_1, v_2, ..., z, ..., u', v', v_1', v_2', ..., y'$ is a $xy - x'y'$ geodesic. Thus z lies on a geodesic joining xy and an element of $S'(e)$. Thus we have proved that a vertex that is incident with $u'v'$ or an edge of $S(e)$ or that lies on a geodesic joining xy and $u'v'$ of $S(e)$ also is incident with an edge of $S'(e)$ or lies on a geodesic joining e and an edge of $S'(e)$. Hence it follows that $S'(e)$ is an edge fixing edge-to-edge geodetic set.
of an edge e of G such that $|S'(e)| = |S(e)| - 1$, which is a contradiction to $S(e)$ an
$geffe$ set of G.

Case 2. Suppose that $e = xy \in G_2$. The proof is similar to that of Case 1. Hence the
theorem follows.

Theorem 4.9. For any non-trivial tree T with k end edges,

$$geffe(G) = \begin{cases} k - 1 & \text{if } e \text{ is an end edge of } G \\ k & \text{if } e \text{ is an internal edge of } G \end{cases}$$

Proof. This follows from Corollary 4.6 and Theorem 4.5.

Theorem 4.10. For the graph $G = C_p$ ($p \geq 4$), $geffe(G) = \begin{cases} 1 & \text{if } p \text{ is even} \\ 2 & \text{if } p \text{ is odd} \end{cases}$ for any
edge e of $E(G)$.

Proof. Suppose that p is even. Let $p = 2k$ and let C_p: $v_1, v_2, v_3, ..., v_k, v_{k+1}, ..., v_{2k}, v_1$ be the cycle. Then v_{k+1} is the antipodal vertex of v_1 and v_{k+2} is the antipodal vertex of v_2. For the edge $e = v_1v_2$, let $S(e) = \{v_{k+1}v_{k+2}\}$. Since each vertex of C_p lies on the $e-f$ geodesic where $f = v_{k+1}v_{k+2} \in S(e)$, it follows that $S(e)$ is an edge fixing edge-to-edge geodetic set of an edge e of C_p. Hence $geffe(C_p) = |S(e)| = 1$.

Suppose that p is odd. Let $p = 2k + 1$ and let C_p: $v_1, v_2, v_3, ..., v_k, v_{k+1}, ..., v_{2k}$, v_{2k+1}, v_1 be the cycle. Let $e = v_1v_2$ be an edge of C_p. Let $S(e) = \{v_{k+1}v_{k+2}\}$. Clearly the
vertices $v_{k+3}, v_{k+4}, ..., v_{2k}$, v_{2k+1} do not lie on the $e-f$ geodesic where $f = v_{k+1}v_{k+2} \in S(e)$.
Hence $S(e)$ is not an edge fixing edge-to-edge geodetic set of an edge e of C_p. However $S(e) \cup \{v_{k+2}v_{k+3}\}$ is an edge fixing edge-to-edge geodetic set of an edge e of C_p. Hence $geffe(C_p) = 2$.

92
Theorem 4.11. For the complete graph K_p ($p \geq 4$) with p even, $g_{efee}(G) = \frac{p-2}{2}$ for every edge in $E(G)$.

Proof. Let $G = K_p$ and e be an edge of G. Let $S(e)$ be any set of $\frac{p-2}{2}$ independent edges of K_p such that $e \notin S(e)$. Since each vertex of K_p is either incident with an edge of $S(e)$ or incident with e, $S(e)$ is an edge fixing edge-to-edge geodetic set of an edge e of G. Hence it follows that $g_{efee}(G) \leq \frac{p-2}{2}$. If $g_{efee}(G) < \frac{p-2}{2}$, then there exists an edge fixing edge-to-edge geodetic set $S'(e)$ of K_p such that $|S'(e)| < \frac{p-2}{2}$. Therefore, there exists at least one edge h of K_p such that h is not adjacent with any edge of $S'(e)$. Hence h is not incident with any edge of $S'(e)$ nor lies on the $e-f$ geodesic where $f \in S'(e)$ and so $S'(e)$ is not an edge fixing edge-to-edge geodetic set of an edge e of G, which is a contradiction. Thus $S(e)$ is an edge fixing edge-to-edge geodetic set of an edge e of K_p. Hence $g_{efee}(K_p) = \frac{p-2}{2}$. □

Theorem 4.12. For the complete graph $G = K_p$ ($p \geq 5$) with p odd, $g_{efee}(K_p) = \frac{p-1}{2}$, for every edge in $E(G)$.

Proof. Let e be an edge of G and let $M(e)$ consist of any set of $\frac{p-5}{2}$ independent edges of K_p and such that $e \notin S(e)$ and $M'(e)$ consist of two adjacent edges of K_p, each of which is independent with the edges of $M(e)$. Let $S(e) = M(e) \cup M'(e)$. Since each edge of K_p is either incident with an element of $S(e)$ or incident with e, $S(e)$ is an edge fixing edge-to-edge geodetic set of e of G. Hence it follows that $g_{efee}(G) \leq \frac{p-1}{2}$. □
\[\frac{p - 5}{2} + 2 = \frac{p - 1}{2} \]. If \(g_{ef}(G) < \frac{p - 1}{2} \), then there exists an edge fixing edge-to-edge geodetic set \(S'(e) \) of \(e \) of \(K_p \) such that \(|S'(e)| < \frac{p - 1}{2} \). Therefore, there exists at least one edge \(h \) of \(K_p \) such that \(h \) is not incident with any edge of \(S'(e) \). Hence the edge \(h \) is neither incident with any edge of \(S'(e) \) nor lies on \(e-f \) geodesic where \(f \in S'(e) \) and so \(S'(e) \) is not an edge fixing edge-to-edge geodetic set of \(e \) of \(G \), which is a contradiction. Thus \(S(e) \) is an edge fixing edge-to-edge geodetic set of an edge \(e \) of \(K_p \). Hence \(g_{ef}(G) = \frac{p - 1}{2} \).

Theorem 4.13. For the complete bipartite graph \(G = K_{m,n} (2 \leq m \leq n) \), \(g_{ef}(G) = n - 1 \), for every edge in \(E(G) \).

Proof. Let \(X = \{x_1, x_2, \ldots, x_m\} \) and \(Y = \{y_1, y_2, \ldots, y_n\} \) be a bipartition of \(G \). Let \(T \) consist of the set of \(m-1 \) independent edges \(x_1y_1, x_2y_2, \ldots, x_{m-1}y_{m-1} \) and \(T' \) consist of the \(n-m+1 \) adjacent edges \(x_my_m, x_my_{m+1}, \ldots, x_my_n \).

Case 1. Suppose that \(e \in T \). Then \(e = x_iy_i (1 \leq i \leq m - 1) \). Let \(S(e) = \{x_1y_1, x_2y_2, \ldots, x_{i-1}y_{i-1}, x_{i+1}y_{i+1}, \ldots, x_{m-1}y_{m-1}, x_my_m, x_my_{m+1}, \ldots, x_my_n\} \). It is easily verified that each vertex of \(G \) (except \(x_i, y_i \)) is incident on the \(e-f \) geodesic for some \(f \in S(e) \). Hence \(S(e) \) is an edge fixing edge-to-edge geodetic set of an edge \(e \) of \(G \), it follows that \(g_{ef}(G) \leq |S(e)| = n - 1 \). If \(g_{ef}(G) < n - 1 \), then there exists an edge fixing edge-to-edge geodetic set \(S'(e) \) of \(e \) of \(G \) such that \(|S'(e)| < n - 1 \). Therefore, there exists at least one edge \(h \) of \(G \) such that \(h \) is not incident with any edge of \(S'(e) \). Hence the edge \(h \) is neither incident with any edge of \(S'(e) \) nor lies on the geodesic \(e-f \) where