the edge e does not lies on a geodesic joining a pair of edges of S' and so S' is not an edge-to-edge geodetic set of G, which is a contradiction. Hence $g_{ee}(G) = \frac{p + 1}{2}$.

Theorem 2.21. For the cycle C_p ($p \geq 4$), $g_{ee}(C_p) = \begin{cases} 2 & \text{if } p \text{ is even} \\ 3 & \text{if } p \text{ is odd} \end{cases}$.

Proof. Suppose that p is even. Let $p = 2k$ and let $C_p : v_1, v_2, v_3, ..., v_k, v_{k+1}, ..., v_{2k}, v_1$ be the cycle. Then v_{k+1} is the antipodal vertex of v_1 and v_{k+2} is the antipodal vertex of v_2. Let $S = \{v_1v_2, v_{k+1}v_{k+2}\}$. Clearly, S is an edge-to-edge geodetic set of C_p so that $g_{ee}(C_p) = 2$. Suppose that p is odd. Let $p = 2k + 1$ and let $C_p : v_1, v_2, v_3, ..., v_k, v_{k+1}, ..., v_{2k}, v_{2k+1}, v_1$ be the cycle. It is clear that no two element subset of edges is an edge-to-edge geodetic set of C_p. Let $S = \{v_1v_2, v_{k+1}v_{k+2}, v_{k+2}v_{k+3}\}$. Then S is an edge-to-edge geodetic set of G so that $g_{ee}(C_p) = 3$.

Theorem 2.22. A set S of edges of $G = K_{n,n}$ ($n \geq 2$) is a minimum edge-to-edge geodetic of G if and only if S consists of n independent edges.

Proof. Let S be any set of n independent edges of $G = K_{n,n}$ ($n \geq 2$). Since each edge of G lies on a geodesic joining a pair of edges of S, it follows that $g_{ee}(G) \leq n$. If $g_{ee}(G) < n$, then there exists an edge-to-edge geodetic set S' of G such that $|S'| < n$. Therefore, there exists at least one edge e of S such that $e \notin S'$. Hence e does not lies on a geodesic joining a pair of edges of S' and so S' is not an edge-to-edge geodetic set of G, which is a contradiction. Hence S is a minimum edge-to-edge geodetic set of $K_{n,n}$.

Conversely, let S be a minimum edge-to-edge geodetic set of G. Let S' be any set of n independent edges of G. Then as in the first part of this theorem, S' is a minimum edge-to-edge geodetic set of G. Therefore, $|S'| = n$. Hence $|S| = n$. If S is not
independent, then there exists an edge e of G such that e does not lie on a geodesic joining a pair of edges of S. Hence S is not an edge-to-edge geodetic set of G, which is a contradiction. Thus S consists of n independent edges. □

Corollary 2.23. For the complete bipartite graph $G = K_{n,n}$ ($n \geq 2$), $g_{ee}(G) = n$.

Theorem 2.24. For the complete bipartite graph $G = K_{m,n}$ ($2 \leq m < n$), $g_{ee}(G) = n$.

Proof. Let $X = \{x_1, x_2, \ldots, x_m\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$ be a bipartition of G. Let T consist of the set of $m - 1$ independent edges $x_1y_1, x_2y_2, \ldots, x_{m-1}y_{m-1}$ and T' consist of the $n - m + 1$ adjacent edges $x_my_m, x_my_{m+1}, \ldots, x_my_n$. Let $S = T \cup T'$. Since each edge of G lies on a geodesic joining a pair of edges of S, it follows that $g_{ee}(G) \leq m - 1 + n - m + 1 = n$. If $g_{ee}(G) < n$, then there exists an edge-to-edge geodetic set S' of G such that $|S'| < n$. Therefore there exists at least one edge e of S such that $e \notin S'$. Hence e does not lie on a geodesic joining a pair of edges of S' and so S' is not an edge-to-edge geodetic set of G, which is a contradiction. Hence $g_{ee}(G) = n$. □

The following theorem gives a realization result.

Theorem 2.25. For each pair of integers k and q with $2 \leq k \leq q$, there exists a connected graph G of order $q + 1$ and size q with $g_{ee}(G) = k$.

Proof. For $2 \leq k \leq q$, let P be a path of order $q - k + 3$. Let G be the graph obtained from P by adding $k - 2$ new vertices to P and joining them to any cut-vertex of P. Clearly, G is a tree of order $q + 1$ and size q with k end-edges and so by Corollary 2.17, $g_{ee}(G) = k$. □
THE EDGE-TO-EDGE GEODETIC NUMBER AND DIAMETER OF A
GRAPH

We have seen that if G is a connected graph of size $q \geq 2$, then $2 \leq g_{ee}(G) \leq q$. Indeed, by Theorem 2.25, for each pair k, q of integers with $2 \leq k \leq q$, there is a tree of size q with edge-to-edge geodetic number k. An improved upper bound for the edge-to-edge geodetic number of a graph can be given in terms of its size q and diameter d.

Theorem 2.26. For a connected graph G with $q \geq 2$, $g_{ee}(G) \leq q - d + 2$, where d is the diameter of G.

Proof. Let u and v be vertices of G for which $d(u, v) = d$, where d is the diameter of G and let $P: u = u_0, u_1, u_2, ..., u_d = v$ be a $u - v$ path of length d. Let $e_i = u_{i-1}u_i$ ($1 \leq i \leq d$). Let $S = E(G) - \{u_1u_2, u_2u_3, ..., u_{d-2}u_{d-1}\}$. Let e be any edge of G. If $e = u_iu_{i+1}$ ($1 \leq i \leq d - 1$), then e lies on the $e_1 - e_d$ geodesic P_1: $u_1, u_2, ..., u_{d-1}$. If $e \neq u_iu_{i+1}$ ($1 \leq i \leq d - 1$), then e is an edge of S. Therefore, S is an edge-to-edge geodetic set of G. Consequently, $g_{ee}(G) \leq |S| = q - d + 2$.

Remark 2.28. The bound in Theorem 2.26 is sharp. For the star $G = K_{1, q}$ ($q \geq 2$), $d = 2$ and $g_{ee}(G) = q$, by Corollary 2.18, so that $g_{ee}(G) = q - d + 2$.

We give below a characterization theorem for trees.

Theorem 2.27. For any nontrivial tree T with $q \geq 2$, $g_{ee}(T) = q - d + 2$ if and only if T is a caterpillar.

Proof. Let $P: u_0, u_1, ..., u_{d-1}, u_d = v$ be a diametral path of length d. Let $e_i = v_{i-1}v_i$ ($1 \leq i \leq d$) be the edges of the diametral path P. Let k be the number of end edges of T and l be the number of internal edges of T other than e_i ($2 \leq i \leq d - 1$). Then $d - 2 + l + k = q$. By Corollary 2.17 $g_{ee}(T) = k$ and so $g_{ee}(T) = q - d + 2 - l$.

34
Hence $g_{ee}(T) = q - d + 2$ if and only if $l = 0$, if and only if all internal edges of T lie on the diametral path P, if and only if T is a caterpillar.

The following Theorem gives a realization result.

Theorem 2.29. For each triple d, k, q of integers with $3 \leq k \leq q - d + 2$, $d \geq 4$ and $q - d + k + 1 > 0$, there exists a connected graph G of size q with $\text{diam}(G) = d$ and $g_{ee}(G) = k$.

Proof. Let $3 \leq k = q - d + 2$. Let G be the graph obtained from the path P of length d by adding $q - d$ new vertices to P and joining them to any cut-vertex of P. Then G is a tree of size q and $\text{diam}(G) = d$. By Corollary 2.17, $g_{ee}(G) = q - d + 2 = k$. Now, let $2 \leq k < q - d + 2$.

Case 1. $q - d - k + 1$ is even. Let $(q - d - k + 1) \geq 2$. Let $n = \frac{q - d - k + 1}{2}$. Then $n \geq 1$. Let $P_d : u_0, u_1, \ldots, u_d$ be a path of length d. Add new vertices $v_1, v_2, \ldots, v_{k-2}$ and w_1, w_2, \ldots, w_n and join each $v_i (1 \leq i \leq k - 3)$ with u_1 and also join each $w_i (1 \leq i \leq n)$ with u_1 and u_3 in P_d. Now, join w_1 with u_2 and we obtain the graph G in Figure 2.4(a). Then G has size q and diameter d. By Corollary 2.13, all the end-edges $u_1v_i (1 \leq i \leq k - 3)$, u_0u_1 and $u_{d-1}u_d$ lie on every edge-to-edge geodetic set of G. Let $S = \{u_1v_1, u_1v_2, \ldots, u_1v_{k-3}, u_1u_0, u_{d-1}u_d\}$ be the set of all end-edges of G. Then it is clear that S is not an edge-to-edge geodetic set of G and so $g_{ee}(G) \geq k$. Now $S \cup \{u_2w_1\}$ is an edge-to-edge geodetic set of G so that $g_{ee}(G) = k$.

Case 2. \(q - d - k + 1 \) is odd. Let \(q - d - k + 1 \geq 5 \). Let \(m = (q - d - k) / 2 \). Then \(m \geq 2 \). Let \(P_d: u_0, u_1, \ldots, u_d \) be a path of length \(d \). Add new vertices \(v_1, v_2, \ldots, v_{k-3} \) and \(w_1, w_2, \ldots, w_m \) and join each \(v_i \ (1 \leq i \leq k-2) \) with \(u_1 \) and also join each \(w_i \ (1 \leq i \leq m) \) with \(u_1 \) and \(u_3 \) in \(P_d \). Now join \(w_1 \) and \(w_2 \) with \(u_2 \) and we obtain the graph \(G \) in Figure 2.4(b). Then \(G \) has size \(q \) and diameter \(d \). Now, as in Case 1, \(S = \{u_1v_1, u_1v_2, \ldots, u_1v_{k-2}, u_0u_1, u_{d+1}u_d, u_2w_1, u_2w_2\} \) is an edge-to-edge geodetic set of \(G \) so that \(g_{ee}(G) = k \).
Let $q - d - k + 1 = 1$. Let $P_d : u_0, u_1, \ldots, u_d$ be a path of length d. Add new vertices $v_1, v_2, \ldots, v_k, w_1$ and w_1 and join each v_i ($1 \leq i \leq k - 2$) with u_1 and also join w_1 with u_1 and u_3 in P_d, thereby obtaining the graph G in Figure 2.4(c). Then the graph is of size q and diameter d. Now, as in Case 1, $S = \{u_1v_1, u_1v_2, \ldots, u_1v_{k-2}, u_0u_1, u_d, u_d\}$ is an edge-to-edge geodetic set of G so that $g_{ee}(G) = k$.

Now, let $q - d - k + 1 = 3$. Let $P_d : u_0, u_1, \ldots, u_d$ be a path of length d. Add new vertices $v_1, v_2, v_3, \ldots, v_{k-2}, w_1$ and w_2 and join each v_i ($1 \leq i \leq k - 2$) with u_1 and also join w_1 and w_2 with u_1 and u_3 and obtain the graph G in Figure 2.4(d). Then G has
size \(q \) and diameter \(d \). Now, as in Case 1, \(S = \{u_1v_1, u_1v_2, \ldots, u_1v_{k-2}, u_0u_1, u_{d-1}u_d\} \) is an edge-to-edge geodetic set of \(G \) so that \(g_{ee}(G) = k \). \[\blacksquare\]

Theorem 2.30. For positive integers \(r, d \) and \(l \geq 2 \) with \(r \leq d \leq 2r \), there exists a connected graph \(G \) with \(\text{rad}(G) = r \), \(\text{diam}(G) = d \) and \(g_{ee}(G) = l \).

Proof. When \(r = 1 \), we let \(G = K_{2, l} \) or \(G = K_{1, l} \) according to whether \(d = 1 \) or \(d = 2 \) respectively. Then the result follows from Corollary 2.20 and Corollary 2.18 respectively. Let \(r \geq 2 \). If \(r = d \) and \(l = 2 \), let \(G = C_{2r} \). Then by Theorem 2.22, \(g_{ee}(G) = 2 = l \). Let \(l \geq 3 \). Let \(C_{2r} : u_1, u_2, \ldots, u_{2r}, u_1 \) be the cycle of order \(2r \). Let \(G \) be the graph obtained by adding the new vertices \(y_1, y_2, \ldots, y_{l-2} \) and joining each \(y_i (1 \leq i \leq l - 2) \) with \(u_1 \) and \(u_2 \) of \(C_{2r} \). The graph \(G \) is shown in Figure 2.5.
It is easily verified that the eccentricity of each vertex of G is r so that $\text{rad}(G) = \text{diam}(G) = r$. It is clear that each y_i $(1 \leq i \leq l-2)$ is an extreme vertex of G. By Theorem 2.11, every edge-to-edge geodetic set of G contains at least one edge incident on x_i $(1 \leq i \leq l-2)$. It is easily verified that $S \cup \{e\}$, where $e \not\in S$ is not an edge–to-edge geodetic set of G and so $g_{ee}(G)=l$. Let $S = \{u_1y_1, u_1y_2, \ldots, u_1y_{l-2}, u_2y_{l-1}\}$. It is clear that S is not an edge-to-edge geodetic set of G. However, $S \cup \{u_1u_2, u_{r+1}u_{r+2}\}$ is an edge-to-edge geodetic set of G. Since $y_1, y_2, \ldots, y_{l-1}$ are the only extreme vertices of G, it follows from Corollary 2.13 that $g_{ee}(G) = l$.

Let $r < d$. If $l = 2$, then take G to be any path on at least three vertices. Let $l \geq 3$. Let $C_{2r} : v_1, v_2, \ldots, v_{2r}, v_1$ be a cycle of order $2r$ and let $p_{d-r+1} : u_0, u_1, u_2, \ldots, u_{d-r}$ be a path of order $d - r + 1$. Let H be the graph obtained from C_{2r} and u_0 in P_{d-r+1} by identifying v_1 in C_{2r} and u_0 in P_{d-r+1}. Now, add $(l-3)$ new vertices $z_1, z_2, \ldots, z_{l-3}$ to H and join each vertex z_i $(1 \leq i \leq l-3)$ to the vertex u_{d-r-1} and obtain the graph G of Figure 2.6. Then $\text{rad}(G) = r$ and $\text{diam}(G) = d$. Let $S = \{u_{d-r}z_1, u_{d-r}z_2, \ldots, u_{d-r}z_{l-3}, u_{d-r}u_{d-r}\}$ be the set of end-edges of G. By Corollary 2.13, S is contained in every edge-to-edge geodetic set of G. It is clear that S is not an edge-to-edge geodetic set of G. It is also seen that $S \cup \{e\}$, where $e \in E(G) - S$ is not an edge-to-edge geodetic set.
of G. However, the set $S_1 = S \cup \{v_r, v_{r+1}, v_{r+2}\}$ is an edge-to-edge geodetic set of G so that $g_{ee}(G) = l - 2 + 2 = l$.

![Diagram](image)

Figure 2.6

In the following we characterize graphs G for which $g_{ee}(G) = q$ or $q - 1$.

Theorem 2.31. If G is a connected graph such that it is not a star, then $g_{ee}(G) \leq q - 1$.

Proof. Let G be a tree and let e be an internal edge of G. Then $S = E(G)$ is an edge-to-edge geodetic set of G so that $g_{ee}(G) \leq q - 1$. If G is not a tree, then G contains a cycle, say C. If v_1, v_2, \ldots, v_k be the vertices of C. Let v be the vertex of $G - C$ such that v is adjacent to v_1 say. Then $S = E(G) - \{v_1v_2\}$ is an edge-to-edge geodetic set of G so that $g_{ee}(G) \leq q - 1$.

Remark 2.32. The bound in Theorem 2.35 is sharp. For the complete graph $G = K_3$, $g_{ee}(G) = 2 = q - 1$.

Theorem 2.33. For any connected graph G, $g_{ee}(G) = q$ if and only if G is a star.

Proof. Let G be a star. Then by Corollary 2.19, $g_{ee}(G) = q$. Conversely, let $g_{ee}(G) = q$. If G is not a star, then by Theorem 2.31, $g_{ee}(G) \leq q - 1$, which is a contradiction. Therefore, G is a star.
Theorem 2.34. Let G be a connected graph which is not a tree. Then
\[g_{ee}(G) \leq q - 2 \quad (q \geq 4). \]

Proof. If the graph G is a cycle C_p ($p \geq 4$), then by Theorem 2.22, $g_{ee}(G) \leq q - 2$. If the graph G is not a cycle, let $C : v_1, v_2, v_3, ..., v_k, v_1 (k \geq 3)$ be a smallest cycle in G. Without loss of generality let us assume that $d(v_1) \geq 3$. Now, $S = E(G) - \{v_1v_2, v_1v_k\}$ is an edge-to-edge geodetic set so that $g_{ee}(G) \leq q - 2$.

Remark 2.35 The bound in Theorem 2.34 is sharp. For the graph G given in Figure 2.7, $S = \{v_1v_2, v_3v_4\}$ is an edge-to-edge geodetic set of G so that $g_{ee}(G) = 2 = q - 2$.

![Figure 2.7](image)

Theorem 2.36. For any connected graph G with $q \geq 3$, $g_{ee}(G) = q - 1$ if and only if G is either C_3 or a double star.

Proof. If G is C_3, then $g_{ee}(G) = 2 = q - 1$. If G is a double star, then by Corollary 2.19, $g_{ee}(G) = q - 1$. Conversely, let $g_{ee}(G) = q - 1$. Let $q = 3$. If G is a tree, then $G = P_4$ or $K_{1,3}$. For $G = K_{1,3}$, by Corollary 2.19, $g_{ee}(G) = 3 = q$, which is a contradiction. If $G = P_4$, it is a double star and by Corollary 2.19, $g_{ee}(G) = 2 = q - 1$ which satisfies the requirement of the theorem. If G is not a tree, then $G = C_3$, which satisfies the requirements of the theorem. Thus the theorem follows.

Let $q \geq 4$. If G is not a tree, then by Theorem 2.34, $g_{ee}(G) \leq q - 2$, which is a contradiction. Hence G is a tree. Now it follows from Theorem 2.26 that $d \leq 3$.

41
Therefore $d = 2$ or 3. If $d = 2$, then G is the star $K_{1,q}$. By Corollary 2.18, $g_{ce}(G) = q$, which is a contradiction to the hypothesis. If $d = 3$, then G is a double star, which satisfies the requirements of the theorem. Thus the theorem is proved.

Theorem 2.37. Let G be a connected graph with $q \geq 4$, which is not a cycle and not a tree and let $C(G)$ be the length of a smallest cycle. Then $g_{ce}(G) \leq q - C(G) + 1$ if $C(G)$ is odd, and $g_{ce}(G) \leq q - C(G) + 2$ if $C(G)$ is even.

Proof. Let $C(G)$ denote the length of a smallest cycle in G and let C be a cycle of length $C(G)$. We consider two cases.

Case 1. $C(G)$ is odd. First suppose that $C(G) = 3$. Let $C : v_1, v_2, v_3, v_1$ be a cycle of length 3. Since G is not a cycle, there exists a vertex v in G such that v is not on C and v is adjacent to v_1, say. Let $S = E(G) - \{v_1v_2, v_1v_3\}$. Then every edge of G lies on a geodesic joining a pair of edge of S and so S is an edge-to-edge geodetic set of G. Thus $g_{ce}(G) \leq q - 2 = q - C(G) + 1$.

Next suppose that $C(G) \geq 5$. Let $C : v_1, v_2, \ldots, v_k, v_{k+1}, v_k, \ldots, v_{2k+1}, v_1$ be a cycle of least length $C(G) = 2k + 1$. Since G is not a cycle, there exists a vertex v in G such that v is not on C and v is adjacent to v_1, say. We claim that $d(vv_1, v_{k+1}v_{k+2}) = k$.

Since $P : v_1, v_2, v_3, \ldots, v_{k+1}$ is a path of length k on C, it follows that $d(vv_1, v_{k+1}v_{k+2}) \geq k$. If $d(vv_1, v_{k+1}v_{k+2}) \leq k - 1$, then at least one of $d(vv_1, v_i)$ and $d(v, v_i)$ for $i = k + 1, k + 2$ is less than or equal to $k - 1$. First suppose that $d(vv_1, v_{k+1}) \leq k - 1$. Let Q be a $v_1 - v_{k+1}$ shortest path of length at most $k - 1$ different from P. Hence there exists at least one vertex of Q that is not on P and since the length of Q is at most $k - 1$, it follows that a cycle of length at most $2k - 1$ is formed. This is a contradiction to $C(G) = 2k + 1$. Thus $d(vv_1, v_{k+1}) = k$. Similarly we can prove that $d(vv_1, v_{k+2}) = k$.

Next, suppose that \(d(v, v_{k+1}) \leq k - 1 \). Since \(P': v, v_1, v_2, \ldots, v_{k+1} \) is a path of length \(k + 1 \), it follows that \(d(v, v_{k+1}) \leq k + 1 \). Then, as above, a cycle of length at most \(2k \) is formed and this is a contradiction. Hence \(d(v, v_{k+1}) = k \) or \(k + 1 \). Similarly we can prove that \(d(v, v_{k+2}) = k \) or \(k + 1 \). Since \(d(v_1, v_{k+1}) = d(v_1, v_{k+2}) = k \), it follows that \(d(vv_1, v_{k+1}v_{k+2}) = k \).

Now, let \(S = (E(G) - E(C)) \cup \{v_{k+1}v_{k+2}\} \). Then \(S \) is an edge-to-edge geodetic set of \(G \) and so \(g_{ee}(G) \leq q - C(G) + 1 \).

Case 2. \(C(G) \) is even. First suppose that \(C(G) = 4 \). Let \(C = v_1, v_2, v_3, v_4, v_1 \) be a cycle of length 4. Since \(G \) is not a cycle, there exists a vertex \(v \) in \(G \) such that \(v \) is not on \(C \) and \(v \) is adjacent to \(v_1 \), say. Let \(S = E(G) - \{v_1v_2, v_1v_4\} \). Then \(S \) is an edge-to-edge geodetic set of \(G \). Thus \(g_{ee}(G) \leq q - 2 = q - C(G) + 2 \).

Next suppose that \(C(G) \geq 6 \). Let \(C = v_1, v_2, \ldots, v_k, v_{k+1}, v_{k+2}, \ldots, v_{2k}, v_1 \) be a cycle of least length \(C(G) = 2k \). Since \(G \) is not a cycle, there exists a vertex \(v \) in \(G \) such that \(v \) is not on \(C \) and \(v \) is adjacent to \(v_1 \), say. We claim that \(d(vv_1, v_kv_{k+1}) = d(vv_1, v_{k+1}v_{k+2}) = k - 1 \). Since \(Q: v_1, v_2, v_3, \ldots, v_k \) and \(Q': v_1, v_2k, v_2k-1, \ldots, v_k+3, v_k+2 \) are paths of length \(k - 1 \) each on \(C \), it follows that \(d(vv_1, v_kv_{k+1}) = d(vv_1, v_{k+1}v_{k+2}) \leq k - 1 \). If \(d(vv_1, v_kv_{k+1}) \leq k - 2 \) or \(d(vv_1, v_{k+1}v_{k+2}) \leq k - 2 \), then proceeding as in Case 1, a cycle of length at most \(2k - 3 \) or \(2k - 2 \) or \(2k - 1 \) is formed as the case may be, contradicting that the least length of a cycle is \(2k \). Thus \(d(vv_1, v_kv_{k+1}) = d(vv_1, v_{k+1}v_{k+2}) = k - 1 \).

Let \(S = (E(G) - E(C)) \cup \{v_kv_{k+1}, v_{k+1}v_{k+2}\} \). Then \(S \) is an edge-to-edge geodetic set of \(G \) and so \(g_{ee}(G) \leq q - C(G) + 2 \).

Theorem 2.38. If \(G \) is a connected graph of size \(q \geq 4 \) and not a tree such that \(g_{ee}(G) = q - 2 \), then \(G \) is unicyclic.
Proof. Suppose that G is not unicyclic. Let $C(G)$ denote the length of a smallest cycle in G. It follows from Theorem 2.37 that $C(G) \leq 4$.

Case 1. $C(G) = 3$. Let $C' : u, v, w, u$ be a cycle of length 3. Let C'' be any other cycle in G.

Subcase 1a. Suppose that C' and C'' have exactly one vertex, say u in common. Then $\deg(u) \geq 4$. Let ux be an edge of C' and let $S = E(G) – \{ux, uv, uw\}$. Then S is an edge-to-edge geodetic set of G. Hence $g_{ee}(G) \leq q - 3$, which is a contradiction.

Subcase 1b. Suppose that C and C' have exactly two vertices, say u and v in common. Then $\deg u \geq 3$ and $\deg v \geq 3$. Let ux be an edge incident at u on C' such that $ux \neq uv$ and let $S = E(G) – \{ux, uv, vw\}$. Then S is an edge-to-edge geodetic set of G. Hence $g_{ee}(G) \leq q - 3$, which is a contradiction.

Subcase 1c. Suppose that C and C' have no vertex in common. Since G is connected, there is a path P connecting the vertex u on C to a vertex z on C'. Let zx be an edge of C' incident at z on C'. Then the set $S = E(G) – \{uv, uw, zx\}$ is an edge-to-edge geodetic set of G, as earlier. Hence $g_{ee}(G) \leq q - 3$, which is a contradiction.

Case 2. $C(G) = 4$. Let $C : u, v, w, x, u$ be a cycle of length 4. Let C' be any other cycle in G.

Subcase 2a. Suppose that C and C' have exactly one vertex, say u in common. Then $\deg(u) \geq 4$. Let uv be an edge of C' and let $S = E(G) – \{ux, uy, uv\}$. Since every edge of G is incident with an element of S, it is clear that S is an edge-to-edge geodetic set of G. Hence $g_{ee}(G) \leq q - 3$, which is a contradiction.
Subcase 2b. Suppose that C and C' have exactly two vertices, say u and v in common. Then $\deg u \geq 3$ and $\deg v \geq 3$. Let $uy \neq uv$ be an edge of C' incident at u on C' and let $S = E(G) - \{uy, uv, xw\}$. Since every edge of G is incident with an element of S, it is clear that S is an edge-to-edge geodetic set of G. Hence $g_{ee}(G) \leq q - 3$, which is a contradiction.

Subcase 2c. Suppose that C and C' have exactly three vertices say u, v and w in common. Then at least two vertices, say u and w have degree at least 3. Let uy and wz be edges on C' such that $uy \neq uv$ and $wz \neq wv$. Let $S = E(G) - \{ux, uv, wz\}$. Since every edge of G is incident with an element of S, S is an edge-to-edge geodetic set of G. Hence $g_{ee}(G) \leq q - 3$, which is a contradiction.

Subcase 2d. Suppose that C and C' have no vertex in common. Since G is connected, there is a path P connecting the vertex u on C to a vertex z on C'. Let zy be an edge of C' incident at z on C'. Then the set $S = E(G) - \{zy, uv, xw\}$ is an edge-to-edge geodetic set of G, as earlier. Hence $g_{ee}(G) \leq q - 3$, which is a contradiction. Thus G is unicyclic.

THE EDGE-TO-VERTEX GEODETIC NUMBER AND EDGE-TO-EDGE GEODETIC NUMBER OF GRAPH.

Theorem 2.39. For a connected graph G of size q, $2 \leq g_{ev}(G) \leq g_{ee}(G) \leq q$.

Proof. Any edge-to-edge geodetic set needs at least two edges and therefore $g_{ee}(G) \geq 2$. Let S be an edge-to-edge geodetic set. Then every edge of G is either an element of S or lies on a geodesic joining a pair of edge of S. Also every edge-to-edge geodetic set is an edge-to-vertex geodetic set of G and then $g_{ev}(G) \leq g_{ee}(G)$. Clearly

45
the set of all edges of G is an edge-to-edge geodetic set of G so that $g_{ee}(G) \leq q$. Thus

$$2 \leq g_{ev}(G) \leq g_{ee}(G) \leq q.$$

\[\blacksquare\]

Remark 2.40. The bounds in Theorem 2.39 are sharp. The set of the two end edges of a path P_p ($p \geq 2$) is its unique edge-to-vertex geodetic set so that $g_{ev}(G) = 2$. For the cycle C_4, $g_{ev}(G) = g_{ee}(G) = 2$, for the star $G = K_{1,q}$ ($q \geq 2$), $g_{ee}(G) = q$. Also, the inequalities in the theorem can be strict. For the graph G, given in the Figure 2.2

$g_{ev}(G) = 2$, $g_{ee}(G) = 3$.

In the view of Theorem 2.39, we have the following realization result.

Theorem 2.41. For every two positive integers a and b with $2 \leq a \leq b$, there exists a connected graph G with $g_{ev}(G) = a$ and $g_{ee}(G) = b$.

Proof. Let G be a tree with a end edges. Then by Theorem 1.50, $g_{ev}(G) = a$ and by Corollary 2.16, $g_{ee}(G) = a$. Therefore by taking $a = b$, the theorem is proved. For $2 \leq a < b$, let P: x, y, z be a path of order three. Let G be the graph obtained from P by adding new vertices $w, z_1, z_2, ..., z_{a-1}$ and $w_1, w_2, ..., w_{b-a}$ and joining w with x, each z_i ($1 \leq i \leq a - 1$) with z and each w_i ($1 \leq i \leq b - a$) with x, y and z. The graph G is given in Figure 2.8. Let $Z = \{wx, zz_1, zz_2, ..., zz_{a-1}\}$ be the set of all end edges of G. By Theorem 1.49, Z is a subset of every edge-to-vertex geodetic set of G so that $g_{ev}(G) \geq a$. It is clear that Z is an edge-to-vertex geodetic set of G so that $g_{ev}(G) = a$.

By Corollary 2.13, Z is a subset of every edge-to-edge geodetic set of G. It is easily verified that Z is not an edge-to-edge geodetic set of G. It is easily observed that yw_i ($1 \leq i \leq b-a$) is a subset of every edge to edge geodesic set of V and so $g_{ee}(G) \geq a + b - a = b$. Let $W = \{yw_1, yw_2, ..., yw_{b-a}\}$. Now $S = Z \cup W$ is an edge-to-edge geodetic set of G and so that $g_{ee}(G) = b$.

46
THE UPPER EDGE-TO-EDGE GEODETIC NUMBER OF A GRAPH

Definition 2.42. An edge-to-edge geodetic set S in a connected graph G is called a **minimal edge-to-edge geodetic set** if no proper subset of S is an edge-to-edge geodetic set of G. The **upper edge-to-edge geodetic number** $g_{ee}^+(G)$ of G is the maximum cardinality of a minimal edge-to-edge geodetic set of G.

Example 2.43. For the graph G given in Figure 2.9, $S = \{v_1v_6, v_3v_4\}$ is a minimum edge-to-edge geodetic set of G so that $g_{ee}(G) = 2$. The set $S_1 = \{v_1v_2, v_3v_4, v_5v_6\}$ is an edge-to-edge geodetic set of G and it is clear that no proper subset of S_1 is an edge-to-edge geodetic set of G and so S_1 is a minimal edge-to-edge geodetic set of G. Also it is easily verified that no four element or five element subset of edge set is a minimal edge-to-edge geodetic set of G, it follows that $g_{ee}^+(G) = 3$.
Remark 2.44. Every minimum edge-to-\textit{edge} geodetic set of G is a minimal edge-to-edge geodetic set of G and the converse is not true. For the graph G given in Figure 2.9, $S_1 = \{v_1v_2, v_3v_4, v_5v_6\}$ is a minimal edge-to-edge geodetic set but not a minimum edge-to-edge geodetic set of G.

Theorem 2.45. Let G be a connected graph with cut-edges and let S be a minimal edge-to-edge geodetic set of G. There is no non-pendant cut-edge e of G, which is not belongs to S.

\textbf{Proof.} Proof follows from Theorem 2.16

In the following we determine the upper edge-to-edge geodetic number of some standard graphs.
Theorem 2.46. For any non-trivial tree T with k end-edges, $g_{ee}^+(T) = k$.

Proof. By Corollary 2.13, any edge-to-edge geodetic set contains all the end-edges of T. By Theorem 2.45, no cut-edge of T belongs to any minimal edge-to-edge geodetic set of G. Hence it follows that the set of all end-edges of T is the unique minimal edge-to-edge geodetic set of T so that $g_{ee}^+(T) = k$. Thus the proof is complete. □

Theorem 2.47. For a complete graph $G = K_p (p \geq 4)$, $g_{ee}^+(G) = p - 1$.

Proof. Let S be any set of $p - 1$ adjacent edges of K_p incident at a vertex, say v. Since each edge of K_p is incident with an edge of S, it follows that S is an edge-to-edge geodetic set of G. If S is not a minimal edge-to-edge geodetic set of G, then there exists a proper subset S' of S such that S' is an edge-to-edge geodetic set of G. Therefore there exists at least one vertex, say u of K_p such that u is not incident with any edge of S'. Hence u is neither incident with any edge of S' nor lies on a geodesic joining a pair of edges of S' and so S' is not an edge-to-edge geodetic set of G, which is a contradiction. Hence S is a minimal edge-to-edge geodetic set of G. Therefore $g_{ee}^+(G) \geq p - 1$. Suppose that there exists a minimal edge-to-edge geodetic set M such that $|M| \geq p$. Since M contains at least p edges, $< M >$ contains at least one cycle. Let $M' = M - \{e\}$, where e is an edge of a cycle which lies in $< M >$. It is clear that M' is an edge-to-edge geodetic set with $M' \subset M$, which is a contradiction. Therefore, $g_{ee}^+(G) = p - 1$. □

Theorem 2.48. For the complete bipartite graph $G = K_{m,n}(2 \leq m \leq n)$, $g_{ee}^+(G) = n + m - 2$. 49
DISTANCES RELATED PARAMETERS IN GRAPHS WITH RESPECT TO EDGES

Proof. Let \(X = \{x_1, x_2, \ldots, x_m\} \) and \(Y = \{y_1, y_2, \ldots, y_n\} \) be a bipartition of \(G \). Let \(S_i = \{x_1 y_1, x_i y_2, \ldots, x_{i-1} y_{m-1}, x_i y_{m}, x_{i+1} y_{m}, \ldots, x_m y_n\} \), \((1 \leq i \leq m)\), \(M_j = \{x_1 y_j, x_2 y_j, \ldots, x_{m-1} y_j, x_m y_{j-1}, x_m y_j, \ldots, x_m y_{n}\} \), \((1 \leq j \leq n)\) and \(N_k = \{x_1 y_1, x_2 y_2, \ldots, x_{m-1} y_{m-1}, x_m y_m, x_{m+1} y_1, \ldots, x_m y_n\} \) with \(|S_i| = |M_j| = n + m - 2\) and \(|N_k| = n\). It is easily verified that any minimal edge-to-edge geodetic set of \(G \) is of the form either \(S_i \) or \(M_j \) or \(N_k \). Since no proper subset of \(S_i \) \((1 \leq i \leq m)\), \(M_j \) \((1 \leq j \leq n)\) and \(N_k \) is an edge-to-edge geodetic set of \(G \), it follows that, \(g_{ee}^+(G) = n + m - 2 \).

THE EDGE-TO-EDGE GEODETIC NUMBER AND UPPER EDGE-TO-EDGE GEODETIC NUMBER OF A GRAPH

In this section, connected graphs \(G \) of size \(q \) with upper edge-to-edge geodetic number \(q \) or \(q-1 \) are characterized.

Theorem 2.49. For a connected graph \(G \), \(2 \leq g_{ee}(G) \leq g_{ee}^+(G) \leq q \).

Proof. Any edge-to-edge geodetic set needs at least two edges and so \(g_{ee}(G) \geq 2 \). Since every minimal edge-to-edge geodetic set is an edge-to-edge geodetic set, \(g_{ee}(G) \leq g_{ee}^+(G) \). Also, since \(E(G) \) is an edge-to-edge geodetic set of \(G \), it is clear that \(g_{ee}^+(G) \leq q \). Thus \(2 \leq g_{ee}(G) \leq g_{ee}^+(G) \leq q \).

Remark 2.50. The bounds in Theorem 2.49 are sharp. For any non-trivial path \(P \), \(g_{ee}(P) = 2 \). For any tree \(T \), \(g_{ee}(T) = g_{ee}^+(T) \) and \(g_{ee}^+(K_{1,q}) = q \) for \(q \geq 2 \). Also, all the inequalities in the theorem are strict. For the complete graph \(G = K_5 \), \(g_{ee}(G) = 3 \), \(g_{ee}^+(G) = 4 \) and \(q = 10 \) so that \(2 < g_{ee}(G) < g_{ee}^+(G) < q \).

Theorem 2.51. For a connected graph \(G \), \(g_{ee}(G) = q \) if and only if \(g_{ee}^+(G) = q \).

Proof. Let \(g_{ee}^+(G) = q \). Then \(S = E(G) \) is the unique minimal edge-to-edge geodetic set of \(G \). Since no proper subset of \(S \) is an edge-to-edge geodetic set, it is clear that \(S \)
is the unique minimum edge-to-edge geodetic set of G and so $g_{ee}(G) = q$. The converse follows from Theorem 2.49.

Corollary 2.52. For a connected graph G of size q, the following are equivalent:

1. $g_{ee}(G) = q$
2. $g_{ee}^+(G) = q$
3. $G = K_{1,q}$.

Proof. This follows from Theorems 2.32 and 2.51.

Theorem 2.53. For every two positive integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $g_{ee}(G) = a$ and $g_{ee}^+(G) = b$.

Proof. If $a = b$, let $G = K_{1,a}$. Then by Corollary 2.52, $g_{ee}(G) = g_{ee}^+(G) = a$. So, let $2 \leq a < b$. Let P: x, y be a path on two vertices. Let G be the graph in Figure 2.10 obtained from P by adding new vertices $z, x_1, x_2, \ldots, x_{b-a+1}, y_1, y_2, \ldots, y_{a-1}$ and joining each vertex y_i $(1 \leq i \leq a - 1)$ and each vertex x_i $(1 \leq i \leq b - a + 1)$ with z, each vertex x_i $(2 \leq i \leq b - a + 1)$ with x and x_1 with y. Let $S = \{zy_1, zy_2, \ldots, zy_{a-1}\}$ be the set of end-edges of G. By Corollary 2.13, S is contained in every edge-to-edge geodetic set of G. It is clear that S is not an edge-to-edge geodetic set of G and so $g_{ee}(G) \geq a$. However $S' = S \cup \{xy\}$ is an edge-to-edge geodetic set of G so that $g_{ee}(G) = a$.

Now, $T = S \cup \{yx_1, xx_2, \ldots, xx_{b-a+1}\}$ is an edge-to-edge geodetic set of G. We show that T is a minimal edge-to-edge geodetic set of G. Let W be any proper subset of T. Then there exists at least one edge say $e \in T$ such that $e \notin W$. First assume that $e = zy_i$ for some i $(1 \leq i \leq a - 1)$. Then the edge zy_i is neither incident with an edge of W nor lies on any geodesic joining a pair of edges of W and so W is not an edge-to-
edge geodetic set of G. Now, assume that $e = x x_j$ for some $j \ (2 \leq j \leq b – a + 1)$. Then the edge $x x_j$ is neither incident with an edge of W nor lies on a geodesic joining any pair of edges of W and so W is not an edge-to-edge geodetic set of G. Next, assume that $e = y x_1$. Then the edge $y x_1$ is neither incident with an edge of W nor lies on a geodesic joining any pair of edges of W and so W is not an edge-to-edge geodetic set of G. Hence T is a minimal edge-to-edge geodetic set of G so that $g_{ee}^+(G) \geq b$. Now, we show that there is no minimal edge-to-edge geodetic set X of G with $|X| \geq b + 1$. Suppose that there exists a minimal edge-to-edge geodetic set X of G such that $|X| \geq b + 1$. Then by Corollary 2.13, $S \subseteq X$. Since S' is an edge-to-edge geodetic set of G, it follows that $y x \notin X$. Let $M_1 = \{y x_1, x x_2, x x_3, \ldots, x x_{b-a+1}\}$ and $M_2 = \{z x_1, z x_2, z x_3, \ldots, z x_{b-a+1}\}$. Let $X = S \cup S_1 \cup S_2$, where $S_1 \subseteq M_1$ and $S_2 \subseteq M_2$. First we show that $S_1 \subseteq M_1$ and $S_2 \subseteq M_2$. Suppose that $S_1 = M_1$. Then $T \subseteq X$ and so X is not a minimal edge-to-edge geodetic set of G, which is a contradiction. Suppose that $S_2 = M_2$. If $y x_1 \notin X$, then y is neither incident with an edge of X nor lies on a geodesic joining any pair of edges of X and so X is not an edge-to-edge geodetic set of G, which is a contradiction. If $y x_1 \in X$ and if $x y_i$ do not belong to S_1 for all $i \ (2 \leq i \leq b – a + 1)$, then x is neither incident with an edge of X nor lies on a geodesic joining any pair of edges of X and so X is not an edge-to-edge geodetic set of G, which is a contradiction. Therefore $x x_i$ belong to S_1 for some $i \ (2 \leq i \leq b – a + 1)$. Without loss of generality let us assume that $x y_2 \in S_1$. Then $X' = X - \{z x_2\}$ is an edge-to-edge geodetic set of G with $X' \subseteq X$, which is a contradiction. Therefore, $S_1 \subseteq M_1$ and $S_2 \subseteq M_2$. Next we show that $V(<S_1>) \cap V(<S_2>)$ contains no $x_i \ (1 \leq i \leq b – a + 1)$. Suppose that $V(<S_1>) \cap V(<S_2>)$ contains v_i for some $i \ (1 \leq i \leq b – a + 1)$. Without loss of generality let us assume that $y_2 \in V(<S_1>) \cap V(<S_2>)$. Then $X'' = X - \{z x_2\}$ is an edge-to-edge geodetic set of G.
with \(X'' \subset X \), which is a contradiction. Therefore \(|S_1 \cup S_2| = b - a + 1\). Hence it follows that \(|X| = a - 1 + b - a + 1 = b\), which is a contradiction to \(|X| \geq b + 1\). Therefore \(g_{ee}^+(G) = b\).

\[\text{Figure 2.10} \]

THE FORCING EDGE-TO-EDGE GEODETIC NUMBER OF A GRAPH

Definition 2.54 Let \(G \) be a connected graph and let \(S \) be a minimum edge-to-edge geodetic set of \(G \). A subset \(T \subseteq S \) is called a **forcing subset** for \(S \) if \(S \) is the unique minimum edge-to-edge geodetic set containing \(T \). A forcing subset for \(S \) of minimum cardinality is a **minimum forcing subset** of \(S \). The **forcing edge-to-edge geodetic number** of \(S \), denoted by \(f_{gee}(S) \), is the cardinality of a minimum forcing subset of \(S \).

The **forcing edge-to-edge geodetic number** of \(G \), denoted by \(f_{gee}(G) \), is \(f_{gee}(G) = \min \{f_{gee}(S)\} \), where the minimum is taken over all minimum edge-to-edge geodetic sets \(S \) in \(G \).

Example 2.55. For the graph \(G \) given in Figure 2.11, \(S = \{v_1v_2, v_4v_5\} \) is the unique minimum edge-to-edge geodetic set of \(G \) so that \(f_{gee}(G) = 0 \). For the graph \(G \) given in
Figure 2.12, $S_1 = \{v_1v_2, v_5v_7, v_7v_8\}$, $S_2 = \{v_1v_2, v_5v_6, v_7v_8\}$ and $S_3 = \{v_1v_2, v_5v_8, v_6v_7\}$ are the only g_{ee}-sets of G such that $f_{gee}(S_1) = 2, f_{gee}(S_2) = f_{gee}(S_3) = 1$ so that $f_{gee}(G) = 1$.

The next theorem follows immediately from the definition of the edge-to-edge geodetic number and the forcing minimum edge-to-edge geodetic number of a connected graph G.

Theorem 2.56. For every connected graph G, $0 \leq f_{gee}(G) \leq g_{ee}(G)$.

Remark 2.57. The bounds in Theorem 2.56 are sharp. For the graph G given in Figure 2.11, $f_{gee}(G) = 0$ and for the graph $G = K_3, f_{gee}(G) = g_{ee}(G) = 2$. Also, all the
inequalities in the Theorem 2.56 are strict. For the graph G given in Figure 2.12, $f_{gee}(G) = 1$ and $g_{ee}(G) = 3$ so that $0 < f_{gee}(G) < g_{ee}(G)$.

In the following, we characterize graphs G for which bounds in the Theorem 2.56 attained and also graph for which $f_{gee}(G) = 1$.

Theorem 2.58. Let G be a connected graph. Then

- $f_{gee}(G) = 0$ if and only if G has a unique minimum edge-to-edge geodetic set.
- $f_{gee}(G) = 1$ if and only if G has at least two minimum edge-to-edge geodetic sets, one of which is a unique minimum edge-to-edge geodetic set containing one of its elements, and
- $f_{gee}(G) = g_{ee}(G)$ if and only if no minimum edge-to-edge geodetic set of G is the unique minimum edge-to-edge geodetic set containing any of its proper subsets.

Proof. (a) Let $f_{gee}(G) = 0$. Then, by definition, $f_{gee}(S) = 0$ for some minimum edge-to-edge geodetic set S of G so that the empty set ϕ is the minimum forcing subset for S. Since the empty set ϕ is a subset of every set, it follows that S is the unique minimum edge-to-edge geodetic set of G. The converse is clear.

(b) Let $f_{gee}(G) = 1$. Then by Theorem 2.58(a), G has at least two minimum edge-to-edge geodetic sets. Also, since $f_{gee}(G) = 1$, there is a singleton subset T of minimum edge-to-edge geodetic set S of G such that T is not a subset of any other minimum edge-to-edge geodetic set of G. Thus S is the unique minimum edge-to-edge geodetic set containing one of its elements. The converse is clear.
(c) Let $f_{gee}(G) = g_{gee}(G)$. Then $f_{gee}(S) = g_{gee}(G)$ for every minimum edge-to-edge geodetic set S in G. Also, by Theorem 2.6, $g_{gee}(G) \geq 2$ and hence $f_{gee}(G) \geq 2$.

Then by Theorem 2.58(a), G has at least two minimum edge-to-edge geodetic sets and so the empty set \emptyset is not a forcing subset for any minimum edge-to-edge geodetic sets of G. Since $f_{gee}(S) = g_{gee}(G)$, no proper subset of S is a forcing subset of S. Thus no minimum edge-to-edge geodetic set of G is the unique minimum edge-to-edge geodetic set containing any of its proper subsets. Conversely, the hypothesis implies that G contains more than one minimum edge-to-edge geodetic set and no subset of any minimum edge-to-edge geodetic set S other than S is a forcing subset for S.

Hence it follows that $f_{gee}(G) = g_{gee}(G)$. □

Definition 2.59. An edge e of a connected graph G is an *edge-to-edge geodetic edge* of G if e belongs to every minimum edge-to-edge geodetic set of G. If G has a unique minimum edge-to-edge geodetic set S, then every edge of S is an edge-to-edge geodetic edge of G.

Example 2.60. For the graph G given in Figure 2.11, $S = \{v_1v_2, v_4v_5\}$ is the unique minimum edge-to-edge geodetic set of G so that both the edges in S are edge-to-edge geodetic edges of G.

Remark 2.61. By Corollary 2.13, each end-edge of G is an edge-to-edge geodetic edge of G. In fact there are certain edge-to-edge geodetic edges, which are not end-edges of G is evident from Figure 2.12 as mentioned above.

Theorem 2.62. Let G be a connected graph and let \mathcal{F} be the set of relative complements of the minimum forcing subsets in their respective minimum edge-to-edge geodetic set of G. Then $\bigcap_{F \in \mathcal{F}} F$ is the set of edge-to-edge geodetic edges of G.
Proof. Let \(W \) be the set of all edge-to-edge geodetic edges of \(G \). We are to show that \(W = \bigcap_{e \in F} F \). Let \(v \in W \). Then \(e \) belongs to every minimum edge-to-edge geodetic set \(S \) of \(G \). Let \(T \subseteq S \) be the minimum forcing subset for any minimum edge-to-edge geodetic set \(S \) of \(G \). We claim that \(e \in T \). If \(e \in T \), then \(T' = T - \{ e \} \) is a proper subset of \(T \) such that \(S \) is the unique minimum edge-to-edge geodetic set containing \(T' \) so that \(T' \) is a forcing subset for \(S \) with \(|T'| < |T| \), which is a contradiction to \(T \) is a minimum forcing subset for \(S \). Thus \(e \notin T \) and so \(e \in F \), where \(F \) is the relative complement of \(T \) in \(S \). Hence \(e \in \bigcap_{e \in F} F \) so that \(W \subseteq \bigcap_{e \in F} F \).

Conversely, let \(e \in \bigcap_{e \in F} F \). Then \(e \) belongs to every relative complement of minimum forcing subset \(T \) for \(S \). Since \(F \) is the relative complement of \(T \) in \(S \), we have \(F \subseteq S \) and thus \(e \in S \) for every \(S \), which implies that \(e \) is an edge-to-edge geodetic edge of \(G \). Thus \(e \in W \) and so \(\bigcap_{e \in F} F \subseteq W \). Hence \(W = \bigcap_{e \in F} F \). \(\blacksquare \)

Corollary 2.63. Let \(S \) be a minimum edge-to-edge geodetic set of a graph \(G \). Then no edge-to-edge geodetic edge of \(G \) belongs to any minimum forcing set of \(S \).

Theorem 2.64. Let \(G \) be a connected graph and \(W \) be the set of all edge-to-edge geodetic edges of \(G \). Then \(f_{gee}(G) \leq g_{gee}(G) - |W| \).

Proof. Let \(S \) be a minimum edge-to-edge geodetic set of \(G \). Then \(g_{gee}(G) = |S|, \ W \subseteq S \) and \(S \) is the unique minimum edge-to-edge geodetic set containing \(S - W \). Thus \(f_{gee}(G) \leq |S - W| \leq |S| - |W| = g_{gee}(G) - |W| \). \(\blacksquare \)

Corollary 2.65. If \(G \) is a connected graph with \(k \) end edges, then \(f_{gee}(G) \leq g_{gee}(G) - k \).
Proof. This follows from Corollary 2.13 and 2.64.

Remark 2.66. The bound in Theorem 2.64 is sharp. For the graph G given in Figure 2.13, $S_1 = \{v_1v_2, v_2v_3, v_4v_5, v_4v_6\}$, $S_2 = \{v_1v_2, v_3v_4, v_4v_5, v_4v_6\}$, $S_3 = \{v_1v_2, v_2v_3, v_4v_5, v_2v_6\}$ and $S_4 = \{v_1v_2, v_3v_4, v_4v_5, v_2v_6\}$ are the only four minimum edge-to-edge geodetic sets of G such that $f_{gee}(S_1) = f_{gee}(S_2) = f_{gee}(S_3) = f_{gee}(S_4) = 2$ so that $f_{gee}(G) = 2$ and $g_{ee}(G) = 4$. Also, $W = \{v_1v_2, v_4v_5\}$ is the set of all edge-to-edge geodetic edges of G and so $f_{gee}(G) = g_{ee}(G) - |W|$. Also, the inequality in Theorem 2.64 is strict. For the graph G given in Figure 2.12, $g_{ee}(G) = 3$ and $f_{gee}(S_2) = f_{gee}(S_3) = 1$ and $f_{gee}(S_1) = 2$ so that $f_{gee}(G) = 1$. Here, v_1v_2 is the only edge-to-edge geodetic edge of G and so $f_{gee}(G) < g_{ee}(G) - |W|$.

In the following we determine the forcing edge-to-edge geodetic number of some standard graphs.

Theorem 2.67. For a non-trivial tree $G = T$ of size $q \geq 2$, $f_{gee}(G) = 0$.

Proof: Since set of all end edges of G is the unique edge-to-edge geodetic set of G, the result follows from Theorem 2.58(i).
Theorem 2.68. For an even cycle C_p ($p \geq 4$), a set $S \subseteq E(G)$ is a minimum edge-to-edge geodetic set if and only if S consists of a pair of eccentric edges.

Proof. Let $p = 2k$ and let $C_p : v_1, v_2, v_3, ..., v_k, v_{k+1}, ..., v_{2k}, v_1$ be the cycle. Then the edges v_1v_2 and $v_{k+1}v_{k+2}$ are eccentric edges. Let $S = \{v_1v_2, v_{k+1}v_{k+2}\}$. Clearly, S is a minimum edge-to-edge geodetic set of C_p. Conversely, let S be a minimum edge-to-edge geodetic set of C_p. Then $g_{ee}(C_p) = |S|$. Let S' be any set of pair of eccentric edges of C_p. Then as in the first part of this theorem, S' is a minimum edge-to-edge geodetic set of C_p. Hence $|S'| = |S|$. Let $S = \{uv, xy\}$. If uv and xy are not eccentric, then any edge that is not in uv – xy geodesic does not lie on the uv – xy geodesic. Thus S is not a minimum edge-to-edge geodetic set, which is a contradiction. \[\blacksquare\]

Theorem 2.69. For any cycle C_p, $f_{ee}(C_p) = \begin{cases} 1 & \text{if } p \text{ is even} \\ 2 & \text{if } p \text{ is odd} \end{cases}$

Proof. If p is even, then by Theorem 2.68, every minimum edge-to-edge geodetic set of C_p consists of pair of eccentric edges. Hence C_p has $p/2$ independent minimum edge-to-edge geodetic sets and it is clear that each singleton set is the minimum forcing set for exactly one minimum edge-to-edge geodetic set of C_p. Hence it follows from Theorem 2.68 that $f_{ee}(C_p) = 1$.

Let p be odd. Let $p = 2n+1$. Let the cycle be $C_p : v_1, v_2, v_3, ..., v_{2n+1}, v_1$. If $S = \{uv, xy\}$ is any set of two edges of C_p, then no edge of the uv – xy longest path lies on the uv – xy geodesic in C_p and so no two element subset of C_p is an edge-to-edge geodetic set of C_p. Now, it clear that the sets $S_1 = \{v_1v_2, v_{n+1}v_{n+2}, v_{2n+1}v_1\}$, $S_2 = \{v_1v_2, v_{n+1}v_{n+2}, v_{2n+1}v_1\}$, $S_3 = \{v_2v_3, v_{n+2}v_{n+3}, v_{2n+1}v_1\}$, $S_4 = \{v_2v_3, v_{n+2}v_{n+3}, v_{2n+1}v_1\}$, $S_{2n} = \{v_nv_{n+1}, v_{2n}v_{2n+1}, v_{n-1}v_n\}$, $S_{2n+1} = \{v_{n+1}v_{n+2}, v_{2n+1}v_1, v_{n-1}v_n\}$ are the minimum edge-to-edge geodetic sets.
of \(C_\text{p} \). (Note that there are more minimum edge-to-edge geodetic sets of \(C_\text{p} \), for example \(S’ = \{ v_{n+2}, v_{n+3}, v_1v_2, v_nv_{n+1} \} \) is a minimum edge-to-edge geodetic set different from these). It is clear from the minimum edge-to-edge geodetic sets \(S_i (1 \leq i \leq 2n+1) \) that each \(\{ v_iv_{i+1} \} (1 \leq i \leq 2n) \) and \(v_{2n+1}v_1 \) is a subset of more than one minimum edge-to-edge geodetic set \(S_i (1 \leq i \leq 2n+1) \). Hence it follows from Theorem 2.68 that \(f_{\text{gee}}(C_\text{p}) \geq 2 \). Since \(S_1 \) is the unique minimum edge-to-edge geodetic set containing \(T = \{ v_{n+1}v_{n+2}, v_{2n}v_{2n+1} \} \), it follows that \(f_{\text{gee}}(S_1) = 2 \). Thus \(f_{\text{gee}}(C_\text{p}) = 2 \). □

Theorem 2.70. For the complete graph \(G = K_\text{p} (p \geq 4) \) with \(p \) even, \(f_{\text{gee}}(G) = \frac{p-2}{2} \).

Proof. Let \(S \) be a minimum edge-to-edge geodetic set of \(G \) such that \(|S| = p/2 \). Then by Theorem 2.18, every element of \(S \) is independent. We show that \(f_{\text{gee}}(G) = \frac{p-1}{2} \).

Suppose that \(f_{\text{gee}}(G) \leq \frac{p}{2} - 2 \). Then there exists a forcing subset \(T \) of \(S \) such that \(S \) is the unique minimum edge-to-edge geodetic set of \(G \) containing \(T \) and \(|T| \leq \frac{p}{2} - 2 \).

Hence there exists at least two edges \(u\mu_j, u\mu_m \in S \) such that \(u\mu_j, u\mu_m \notin T \) and \(i \neq l, j \neq m \). Then \(S_1 = S - \{ u\mu_j, u\mu_m \} \cup \{ u\mu_m, u\mu_l \} \) is a set of \(p/2 \) independent edges of \(G \) containing \(T \). By Theorem 2.16, \(S_1 \) is a minimum edge-to-edge geodetic set of \(G \) which is a contradiction to \(T \) is a forcing subset of \(S \). Hence \(f_{\text{gee}}(G) = \frac{p}{2} - 1 = \frac{p-2}{2} \).

Theorem 2.71. For the complete graph \(G = K_\text{p} (p \geq 5) \) with \(p \) odd, \(f_{\text{gee}}(G) = \frac{p-1}{2} \).
Proof. Let S be a minimum edge-to-edge geodetic set of G. Then by Theorem 2.20, $S = S_1 \cup S_2$, where S_1 consists of $\frac{p-3}{2}$ independent edges and S_2 consists of two adjacent edges and $|S| = \frac{p+1}{2}$. We show that $f_{gee}(G) = \frac{p+1}{2}-1$. Suppose that $f_{gee}(G) \leq \frac{p+1}{2}-2$. Then there exists a forcing subset T of S such that S is the unique minimum edge-to-edge geodetic set of G containing T and $|T| \leq \frac{p+1}{2}-2$. Hence there exists at least two edges $x, y \in S$ such that $x, y \notin T$. Let us assume that $S_2 = \{x, y\}$. Suppose that $x, y \in S_1$. Then $x = v_i v_j$ and $y = v_l v_m$ such that $i \neq l, j \neq m$. Now, $S_3 = S - \{x, y\} \cup \{v_i v_m, v_j v_l\}$ consists of $\frac{p-3}{2}$ independent edges and two adjacent edges of G containing T. By Theorem 2.18, S_3 is a minimum edge-to-edge geodetic set of G containing T, which is a contradiction to T is a forcing subset of G. Suppose that $x, y \in S_2$. Let $x = v_i v_s$ and $y = v_r v_k$. Let $v_i v_j$ be an edge of S_1. Now, join the vertices v_i, v_j and v_s, v_k. Now $S_4 = S_1 - \{v_i v_j\} \cup \{v_i v_k\} \cup \{v_i v_j, v_s v_k\}$ consists of $\frac{p-3}{2}$ independent edges and two adjacent edges of G. By Theorem 2.18, S_4 is a minimum edge-to-edge geodetic set of G containing T, which is a contradiction. Suppose that $x \in S_1$ and $y \in S_2$. Let $x = v_i v_j$ and $y = v_i v_s$. $S_5 = S_1 - \{v_i v_j\} \cup \{v_i v_j\} \cup \{v_i v_s, v_i v_j\}$ consists of $\frac{p-3}{2}$ independent edges and two adjacent edges of G containing T. By Theorem 2.18, S_5 is a minimum edge-to-vertex geodetic set of G, which is a contradiction to that T is a forcing subset of G. Hence $f_{gee}(G) = \frac{p+1}{2}-1 = \frac{p-1}{2}$.

Theorem 2.72 For the complete bipartite graph $G = K_{n,n}$ $(n \geq 2)$, $f_{gee}(G) = n - 1$.

61
Proof. The proof is similar to the proof of Theorem 2.71.

Theorem 2.73. For the complete bipartite graph $G = K_{m,n}$ $(2 \leq m < n)$, $f_{ge}(G) = n - 1$.

Proof. The proof is similar to the proof of Theorem 2.71.

We have the following realization theorem.

Theorem 2.74. For every pair a, b of integers with $0 \leq a < b$ and $b > a + 1$, there exists a connected graph G such that $f_{gee}(G) = a$ and $g_{ee}(G) = b$.

Proof. Suppose $a = 0$. Let $G = K_{1,b}$. Then by Theorem 2.67, $f_{gee}(G) = 0$ and from Corollary 2.17, $g_{ee}(G) = b$. Suppose that $b = a + 1$. Let $G = K_{2,b}$. Then by Theorem 2.24, $g_{ee}(G) = b$ and from Theorem 2.72, $f_{gee}(G) = b - 1 = a$. Thus, we assume that $0 < a < b$. Let $P: x, y, z$. Let G be the graph obtained from P by adding new vertices $z_1, z_2, \ldots, z_{b-a-1}, w_1, w_2, \ldots, w_a$ by joining each z_i $(1 \leq i \leq a)$ with z and joining each w_i $(1 \leq i \leq a)$ with y and z. The graph G is given in Figure 2.14.

![Figure 2.14](image-url)
Let \(Z = \{zz_1, zz_2, \ldots, zz_{a-1}, xy\} \) be the set of all end-edges of \(G \). By Corollary 2.3, \(Z \) is a subset of every edge-to-edge geodetic set of \(G \). Let \(H_i = \{h_i, k_i\} \) (1 \(\leq \) \(i \) \(\leq \) \(a \)), where \(h_i = zw_i \) and \(k_i = yw_i \). First we show that \(g_{ee}(G) = b \). By Theorem 2.11, every edge-to-edge geodetic set of \(G \) must contain at least one vertex from \(H_i \) (1 \(\leq \) \(i \) \(\leq \) \(a \)). Thus \(g_{ee}(G) \geq b - a + a = b \). On the other hand, since the set \(S = Z \cup \{h_1, h_2, \ldots, h_a\} \) is a minimum edge-to-edge geodetic set of \(G \), it follows that \(g_{ee}(G) \leq |S| = b \). Thus \(g_{ee}(G) = b \). Next we show that \(f_{gee}(G) = a \). Since every \(g_{ee} \)-set of \(G \) contains \(Z \), it follows from Theorem 2.64 that \(f_{gee}(G) \leq g_{ee}(G) - |Z| = b - (b - a) = a \).

Now, since \(g_{ee}(G) = b \) and every minimum edge-to-edge geodetic set of \(G \) contains \(S \), it is easily seen that every minimum edge-to-edge geodetic set \(W \) is of the form \(W \cup \{e_1, e_2, \ldots, e_a\} \), where \(e_i \in H_i \) (1 \(\leq \) \(i \) \(\leq \) \(a \)). Let \(T \) be any proper subset of \(S \) with \(|T| < a \). Then there exists an edge \(e_j \) (1 \(\leq \) \(j \) \(\leq \) \(a \)) such that \(e_j \notin T \). Let \(f_j \) be an edge of \(H_j \) distinct from \(e_j \). Then \(W_j = (S - \{e_j\}) \cup \{f_j\} \) is a \(g_{ee} \)-set properly containing \(T \). Thus \(W \) is not the unique \(g_{ee} \)-set containing \(T \). Thus \(T \) is not a forcing subset of \(S \). This is true for all minimum edge-to-edge geodetic sets of \(G \) and so it follows that \(f_{gee}(G) = a \). \(\blacksquare \)
CHAPTER 3

THE EDGE-TO-EDGE DETOUR NUMBER OF A GRAPH

In this chapter we introduce the edge-to-edge detour number $d_{ee}(G)$ of a connected graph with at least 3 vertices and study some of its general properties. We also determine the edge-to-edge detour number of certain classes of graphs. For each pair of integers k and q with $2 \leq k \leq q$, there exists a connected graph G of order $q + 1$ and size q with $d_{ee}(G) = k$. For each triple d, k, q of integers with $2 \leq k \leq q - d + 2$, $d \geq 4$ and $q - d - k + 1 > 0$, there exists a connected graph G of size q with $diam(G) = D$ and $d_{ee}(G) = k$. For positive integers R, D and $l \geq 2$ with $R \leq D < 2R$ there exists a connected graph G with $rad(G) = R$, $diam(G) = D$ and $d_{ee}(G) = l$. Connected graphs of size $q \geq 4$ with edge-to-edge detour number q or $q - 1$ are characterized. The upper edge-to-edge detour number $d_{ee}^+(G)$ of a graph is studied and is determined for certain classes of graphs. It is shown that, for every pair a, b of integers with $2 \leq a \leq b$, there exists a connected graph G such that $d_{ee}(G) = a$ and $d_{ee}^+(G) = b$. The forcing fixing edge-to-edge detour number $f_{d_{ee}}(G)$ of a graph is studied and is determined for certain classes of graphs. It is shown that, for every pair a, b of integers with $0 \leq a < b$, there exists a connected graph G such that $f_{d_{ee}}(G) = a$ and $d_{ee}(G) = b$.
Definition 3.1. Let $G = (V, E)$ be a connected graph with at least two edges. For subsets A and B of $V(G)$, the detour distance $D(A, B)$ is defined as $D(A, B) = \max \{ D(x, y) : x \in A, y \in B \}$. A $u - v$ path of length $D(A, B)$ is called an $A - B$ detour joining the sets A, B, where $u \in A$ and $v \in B$. An edge e is said to lie on an $A - B$ detour if e is an edge of an $A - B$ detour. For $A = \{u, v\}$ and $B = \{z, w\}$ with uv and zw edges, we write an $A - B$ detour as $uv - zw$ detour and $D(A, B)$ as $D(uv, zw)$.

Example 3.2. For the graph G given in Figure 3.1 with $A = \{v_4, v_5\}$ and $B = \{v_1, v_6\}$, the path $P : v_5, v_4, v_3, v_2, v_1, v_6$ is the only one $A - B$ detour so that $D(A, B) = 5$.

![Figure 3.1](image)

Definition 3.3. Let $G = (V, E)$ be a connected graph with at least 2 edges. A set $S \subseteq E$ is called an edge-to-edge detour set of G if every edge of G is an element of S or lies on a detour joining a pair of edges of S. The edge-to-edge detour number $d_{ee}(G)$ of G is the minimum cardinality of its edge-to-edge detour sets and any edge-to-edge detour set of cardinality $d_{ee}(G)$ is said to be a d_{ee}-set of G.
Example 3.4. For the graph G given in Figure 3.2, the two $v_1v_5 - v_3v_4$ detours are $P: v_1, v_6, v_5, v_4, v_3, v_2$; $Q: v_2, v_3, v_4, v_5, v_7, v_1$ with each of length 5 so that $D(v_1v_5, v_3v_4) = 5$. Since all the edges of G lie on $v_1v_2 - v_2v_3$ detour, $S = \{v_1v_2, v_2v_3\}$ is an edge-to-edge detour set of G so that $d_{ee}(G) = 2$.

![Figure 3.2](image)

Example 3.5. For the graph G given in Figure 3.2, $S_1 = \{v_1v_2, v_3v_4\}$ is another d_{ee}-set of G. Thus there can be more than one d_{ee}-set of G.

Theorem 3.6. For a connected graph G of size $q \geq 2$, $2 \leq d_{ee}(G) \leq q$.

Proof. A d_{ee}-set needs at least two edges and therefore $d_{ee}(G) \geq 2$. Also, the set of all edges of G is an edge-to-edge detour set of G so that $d_{ee}(G) \leq q$. Thus $2 \leq d_{ee}(G) \leq q$. □

Remark 3.7. The bounds in Theorem 3.6 are sharp. For the star $G = K_{1,q} (q \geq 2)$, it is clear that the set of all edges is the unique edge-to-edge detour set of G so that $d_{ee}(G) = q$. The set of two end-edges of a path P of length at least two is its unique minimum edge-to-edge detour so that $d_{ee}(P) = 2$. Thus the star $K_{1,q}$ has $E(K_{1,q})$ as the only possible edge-to-edge detour set and the detour number is q. If G is a path of
length 2, the detour number is 2. Also the bounds in Theorem 3.6 is strict for the graph \(G \) given in the Figure 3.2, \(d_{ee}(G) = 3 \), \(q = 7 \). Thus \(2 < d_{ee}(G) < q \).

Definition 3.8. An edge \(e \) in a graph \(G \) is an edge-to-edge detour edge if \(e \) belongs to every minimum edge-to-edge detour set of \(G \). If \(G \) has a unique minimum edge-to-edge detour set \(S \), then every edge in \(S \) is an edge-to-edge detour edge.

Example 3.9. For the graph \(G \) in Figure 3.3 \(v_2v_5 \) is the detour edge which is in every minimum edge-to-edge detour set.

Remark 3.10. Every edge-to-edge detour edges are not the end edges of \(G \).

Theorem 3.11. Every end-edge of a nontrivial connected graph \(G \) belongs to every edge-to-edge detour set of \(G \). Moreover if the set \(S \) of all end edges of \(G \) is a edge-to-edge detour set, then \(S \) is the unique minimum edge-to-edge detour set for \(G \).
Proof: Let G be a connected nontrivial graph. Since every end edge e in G is either the initial edge or the terminal edge of a detour, it follows that e belongs to every edge-to-edge detour set of G. Thus $d_{ee}(G) \leq |S|$. So $d_{ee}(G) = |S|$ and S is the unique minimum edge-to-edge detour set for G.

![Figure 3.5](image)

Theorem 3.12 Let G be a connected graph with cut edges and let S be an edge-to-edge detour set of G. Then every branch of G contains an element of S, if S is a minimum detour set then no cut-vertex of G belongs to S.

Proof. Assume that there is a branch B of G at a cut-vertex v such that B contains no element of S. Then by Theorem 3.11, B does not contain any end-edge of G. Hence it follows that no vertex of B is an end vertex of G. Let $z = ux$ be any edge of B such that $v \neq u$ and $v \neq x$ (such a vertex exists since $|V(B)| \geq 2$). Then z is not an edge of S and so z lies on an $e-f$ detour $P : u_1, u_2, \ldots, u, x, \ldots, u_i$, where u_1 is an end of e and u_i is an end of f with $e, f \in S$. Since v is a cut-vertex of G, the $u_1 - u$ and $u - u_i$ subpaths of P both contain v and so P is not a path, which is a contradiction. Hence every branch of G contains an element of S.
Corollary 3.13. For any non-trivial tree T with k end-vertices, $d_{ee}(G) = k$ and the set of all k end-edges of T is the unique minimum edge-to-edge detour set of T.

Proof: Let S be the set of all end edges of T. Then by Theorem 3.11, S is a subset of every edge-to-edge detour set of T. Hence $d_{ee}(T) \geq k$. Now S is an edge-to-edge detour set of G so that $d_{ee}(T) = k$. □

Theorem 3.14. For the cycle C_p ($p \geq 4$), $d_{ee}(C_p) = 2$.

Proof: Let $C_p : v_1, v_2, v_k, v_{k+1}, \ldots, v_p$ be the cycle. The set $S = \{v_1v_2, v_2v_3\}$ is an edge-edge detour set of G so that $d_{ee}(C_p) = 2$. □

Theorem 3.15. For the graph K_p, $p \geq 2$, $d_{ee}(K_p) = 2$.

Proof: Let $K_p : v_1, v_2, v_k, v_{k+1}, \ldots, v_p$ be the complete graph. Since every edge of G lies on $v_1v_2- v_3v_4$ detour, $S = \{v_1v_2, v_3v_4\}$ is an edge-to-edge detour set of G so that $d_{ee}(K_p) = 2$. □

Theorem 3.16. Let G be a connected graph with diameter D and size $q \geq 2$. Then $d_{ee}(G) \leq q - D + 2$.

Proof. Since $q \geq 2$, we have $D \geq 2$. Let u and v be two vertices of G such that $D(u, v) = D \geq 2$. Let $P: u = v_0, v_1, v_2, \ldots, v_{D-1}, v_D = v$ be a detour diametral path. Let $S = E(G) - \{v_1v_2, v_2v_3, \ldots, v_{D-2}v_{D-1}\}$. Then the edge $v_i v_j$ ($1 \leq i \leq j \leq D - 1$) lies on the $v_0v_1- v_{D-1}v_D$ detour so that S is an edge-edge detour set of G. Hence $d_{ee}(G) \leq q - D + 2$. □

Theorem 3.17. For every non-trivial tree T, $d_{ee}(G) = q - D + 2$ if and only if T is a caterpillar.
Proof. Let T be any non-trivial tree. Let $D = D(u, v)$ and let $P : u = v_0, v_1, \ldots v_{D-1}, v_D = v$ be a detour diametral path. Let k be the number of end-edges of T and l be the number of internal edges of T other than $v_1v_2, v_2v_3, \ldots, v_{D-2}v_{D-1}$. Then $D - 2 + l + k = q$. By Corollary 3.13, $d_{ee}(T) = k$ and so $d_{ee}(T) = q - D + 2 - l$. Hence $d_{ee}(T) = q - D + 2$ if and only if $l = 0$, if and only if all the internal edges of T lie on the detour diametral path P, if and only if T is a caterpillar.

Theorem 3.18. For each triple D, R, l of integers with $R \leq D < 2R$, there is a connected graph G of detour radius R, detour diameter D, and detour number l.

Proof. When $R = 1$, we let $G = K_{1,l}$. Then the result follows from Corollary 3.13. Let $R \geq 2$. Let $C_{R+1} : v_1, v_2, \ldots, v_{R+1}$ be a cycle of length $R + 1$ and let $P_{D,R} : u_0, u_1, u_2, \ldots, u_{D,R}$ be a path of length $D - R$. Let H be a graph obtained from C_{R+1} and $P_{D,R}$ by identifying v_1 in C_{R+2} and u_0 in $P_{D,R}$. Now add $l - 2$ new vertices $w_1, w_2, \ldots, w_{l-2}$ to H and join each $w_i (1 \leq i < l - 2)$ to the vertex $u_{D,R-1}$ and obtain the graph G as shown in Figure 3.6. Then $\text{rad}_D(G) = R$ and $\text{diam}_D(G) = D$. Let $S = \{ u_{D,R-1}u_{D,R}, u_{D,R-1}w_1, u_{D,R-1}w_2, \ldots, u_{D,R-1}w_{l-2} \}$ be the set of end-edges of G. By Theorem 3.11, S is a subset of every edge-to-edge detour set of G. It is clear that S is not a edge-to-edge detour set of G and so $d_{ee}(G) \geq 1$. However $S \cup \{ v_1, v_2 \}$ is a edge-to-edge detour set of G and so that $d_{ee}(G) = l$. ■
Theorem 3.19. Let G be a connected graph with $q \geq 4$, which is not a cycle and not a tree and let $C(G)$ be the length of the longest cycle. Then $d_{ee}(G) \leq q - C(G) + 1.$

Proof. Let $C(G)$ denote the length of the longest cycle in G. Let $C = v_1,v_2,v_3,\ldots,v_k$. Since G is not a cycle, there exists a vertex v in G, such that v is not on C and v is adjacent to v, say. Then $S = E(G) - \{vv_1\}$ is an edge-to-edge detour set of G. Hence $d_{ee}(G) \leq q - e(G) + 1.$

Theorem 3.20. Let G be a connected graph with size $q \geq 3$. Then $d_{ee}(G) = q$ if and only if $G = K_{1,q}$.

Proof. If $G = K_{1,q}$ then the result follows from Corollary 3.13 that $d_{ee} = q$. Conversely let $d_{ee}(G)=q$. By Theorem 3.16, $D \leq 2$. If $D = 1$, then $G = K_2$, which is a contradiction to $q \geq 3$. Suppose that $D = 2$. If G is a tree, then $G = K_{1,q}$ we have done. If G is not a tree, then since $D = 2$, G is not a cycle. Hence by Theorem 3.20, $d_{ee}(G) \leq q - 2$. Since $C(G) \geq 3$, we get a contradiction. Hence $G = K_{1,q}.$