CHAPTER VI

β*-CLOSED SETS IN BITOPOLOGICAL SPACES

6.1 introduction

The triple \((X,\tau_1,\tau_2)\) where \(X\) is a non-empty set, \(\tau_1\) and \(\tau_2\) are any two arbitrary topologies is called a bitopological space. Kelly [25] initiated the systematic study of such spaces. Levine [29] introduced and studied the notion of generalized closed sets and \(T_{1/2}\) spaces in topological spaces. The notion of generalized closed sets and \(T_{1/2}\) spaces of a bitopological space were introduced and investigated by Fukutake [18]. Also several authors turned their attention to generalization of various concepts of topology by considering bitopological spaces.

The concepts of \(\beta^*\)-closed sets and \(\beta^*\)-open sets discussed in chapter II and some properties of \(\beta^*\)-continuous maps studied in chapter III are used in this chapter.

Section 2 deals with \(\beta^*\)-closed sets and \(\beta^*\)-open sets in bitopological spaces, section 3 concerns with application of \((\tau_i, \tau_j) - \beta^*\)-closed sets and section 4 deals with \(\beta^*\)-continuity, \(\beta^*\)-bicontinuity and \(\beta^*\)-S-bicontinuity and pairwise \(\beta^*\)-irresolute maps in bitopological spaces.

Throughout this chapter \((X,\tau_1,\tau_2)\) and \((Y,\sigma_1,\sigma_2)\) denote two non-empty bitopological spaces on which no separation axioms are assumed, unless otherwise mentioned and the fixed integers \(i,j,k,l,m,n \in \{1,2\}\).
6.2 - (τ_i, τ_j) – β*-closed set and (τ_i, τ_j) – β*-open set

In this section introduce (τ_i, τ_j) – β*-closed sets and (τ_i, τ_j) – β*-open sets in bitopological space are introduced and some of their basic properties are discussed.

Definition 6.2.1 A subset A of a bitopological space (X, τ_1, τ_2) is said to be (τ_i, τ_j) – β*-closed if τ_j – spcl(A) ⊆ int(U) whenever A ⊆ U, and U is τ_i ω-open.

We denote the family of all (τ_i, τ_j) – β*-closed sets in (X, τ_1, τ_2) by β*(τ_i, τ_j).

Remark 6.2.2 By setting τ_1=τ_2 in Definition 6.2.1, a (τ_i,τ_j) – β*-closed set is a β*-closed set.

Remark 6.2.3 τ_j – β*-closed and (τ_i, τ_j) – β*-closed sets are in general independent. It is seen from the following examples.

Example 6.2.4 Let X={a, b, c}, τ_1={φ, {a}, {b, c}, X}, τ_2 = {φ, {a}, {a, b}, X}. Then β*(τ_i, τ_j) = {φ, {a}, {b, c}, X}. Here the set {a, c} is τ_2 – β*-closed but not (τ_1,τ_2) – β*-closed.

Example 6.2.5 Let X={a, b, c}, τ_1={φ, {a}, X}, τ_2 = {φ, {a}, {a, b}, X}.

Then β*(τ_i, τ_j) = P(X) - {a}. Here the set {a, b} is (τ_1,τ_2) – β* closed but not τ_2 - β*-closed.

Proposition 6.2.6 If A is a τ_i-closed (resp. τ_j-α closed, τ_j – semi closed) subset of a bitopological space (X, τ_1, τ_2) and if (X, τ_i) is a T_ω space then the set A is (τ_i,τ_j) – β*-closed, but not conversely.

Proof: Let G be a τ_i-ω-open set such that A ⊆ G. Then by hypothesis, τ_j cl(A) ⊆ G (resp. τ_j acl(A) ⊆ G, τ_j scl(A) ⊆ G). From the result τ_j spcl(A) ⊆ τ_j cl(A),
(resp. \(\tau_j spcl(A) \subseteq \tau_j acl(A) \), \(\tau_j spcl(A) \subseteq \tau_j scl(A) \)) we get \(\tau_j spcl(A) \subseteq G = int(G) \) since \(G \) is open in \((X, \tau_1)\). Therefore \(A \) is \((\tau_i, \tau_j)\)-\(\beta^* \)-closed.

The converse is not true as we see in example 6.2.5

Proposition 6.2.7 If \(A \) is a \(\tau_j \) open and semi-preclosed subset of a bitopological space \((X, \tau_1, \tau_2)\), then the set \(A \) is \((\tau_i, \tau_j)\)-\(\beta^* \)-closed.

Proof: Let \(G \) be a \(\tau_i \)-\(\omega \)-open set such that \(A \subseteq G \). Then by hypothesis, \(\tau_j spcl(A) = A = int(A) \subseteq int(G) \). Hence \(A \) is \((\tau_i, \tau_j)\)-\(\beta^* \)-closed.

The converse of the above Proposition need not be true. It is seen from the following example.

Example 6.2.8 Let \(X = \{a, b, c, d\} \), \(\tau_1 = \{\varnothing, \{a\}, X\} \), \(\tau_2 = \{\varnothing, \{a\}, \{a, b\}, X\} \). Then \(\beta^*(\tau_i, \tau_j) = P(X) - \{a\} \). The set \(A = \{a, c\} \) is neither open nor semi-preclosed in \(\tau_2 \).

Proposition 6.2.9 If \(A \) is a \((\tau_i, \tau_j)\)-\(g^* \)-closed subset of a bitopological space \((X, \tau_1, \tau_2)\) and \((X, \tau_1)\) is a \(T_\omega \) space then \(A \) is \((\tau_i, \tau_j)\)-\(\beta^* \)-closed but not conversely.

Proof: Let \(A \subseteq G \) where \(G \) is \(\tau_i \)-\(\omega \)-open. By lemma 1.1.6 \(G \) is \(\tau_i \)-\(g \)-open. By hypothesis \(\tau_j cl(A) \subseteq G = int(G) \). Hence \(\tau_j spcl(A) \subseteq int(G) \) implies that \(A \) is \((\tau_i, \tau_j)\)-\(\beta^* \)-closed.

Example 6.2.10 Let \(X = \{a, b, c\} \), \(\tau_1 = \{\varnothing, \{a, b\}, X\} \), \(\tau_2 = \{\varnothing, \{a\}, X\} \). Then \(\beta^*(\tau_1, \tau_2) = \{\varnothing, \{c\}, \{b, c\}, \{a, c\}, X\} \) and \(g^*(\tau_1, \tau_2) = \{\varnothing, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\} \). Let \(A = \{a, c\} \). Then \(A \) is \((\tau_1, \tau_2)\)-\(\beta^* \)-closed but not \((\tau_1, \tau_2)\)-\(g^* \)-closed.

Definition 6.2.11[20] A subset \(A \) of a bitopological space \((X, \tau_1, \tau_2)\) is called \((\tau_i, \tau_j)\)-\(gspr \) (resp. \((\tau_i, \tau_j)\)-\(gpr \)) closed if \(\tau_j spcl(A) \subseteq U \) (resp. \(\tau_j pcl(A) \subseteq U \)) whenever \(A \subseteq U \) and \(U \) is \(\tau_i \)-regular open.
Proposition 6.2.12 If A is a (τ_i,τ_j) $-\beta^*$-closed subset of a bitopological space (X,τ_1,τ_2) then A is (τ_i,τ_j) $-\text{gspr}$-closed but not conversely.

Proof: Let G be a τ_i- regular open set such that $A \subset G$. Since G is τ_i-regular open, G is τ_j-open and hence τ_i-ω-open. By hypothesis τ_j-$\text{spcl}(A) \subset \text{int}(G)=G$. Thus A is (τ_i,τ_j)-gspr- closed.

Example 6.2.13 Let X_1 and τ_2 be defined as in example 6.2.10. Then the set $A = \{a, b\}$ is (τ_1,τ_2) gspr closed but not (τ_1,τ_2)-β^*-closed, since $\text{gspr-}(\tau_i,\tau_j) = \{\varnothing, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$.

The following example shows that (τ_i,τ_j)-β^*-closed sets and (τ_i,τ_j)-gpr-closed sets are independent.

Example 6.2.14 Let (X,τ_1,τ_2) be defined as in example 6.2.10. Then $\text{gpr-}(\tau_1,\tau_2) = \{\varnothing, \{b\}, \{c\}, \{b, c\}, X\}$. Let $A = \{b\}$. Then A is (τ_1,τ_2)-gpr-closed but not (τ_1,τ_2)-β^*-closed. Also $B = \{a, c\}$ is (τ_1,τ_2)-β^*-closed but not (τ_1,τ_2)-gpr-closed.

Definition 6.2.15 A subset A of a bitopological space (X,τ_1,τ_2) is called (τ_i,τ_j)-gsp closed if τ_j-$\text{spcl}(A) \subset U$ whenever $A \subset U$ and U is open in τ_i.

The collection of all (τ_i,τ_j)-gsp closed sets are denoted by $\text{GSPC}(\tau_1,\tau_2)$.

Proposition 6.2.16 If A is a (τ_i,τ_j)-β^*-closed subset of a bitopological space (X,τ_1,τ_2) then A is (τ_i,τ_j)-gsp closed but not conversely.

Proof: Let G be a τ_i open set such the $A \subset G$. Hence G is a τ_i-ω-open set. By hypothesis τ_j-$\text{spcl}(A) \subset \text{int}(G) \subset G$. Hence A is (τ_i,τ_j)-gsp closed.

Example 6.2.17 Let (X,τ_1,τ_2) be the bitopological space, defined as in example 6.2.10. Then $\text{GSPC}(\tau_1,\tau_2) = \{\varnothing, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. Let $A = \{b\}$. Then A is (τ_1,τ_2)-gsp closed but not (τ_1,τ_2)-β^*-closed.
Proposition 6.2.18 If A is a (τ_i, τ_j)-β^*-closed subset of a bitopological space (X, τ_1, τ_2) then A is (τ_i, τ_j)-$\hat{\eta}^*$-closed but not conversely.

Proof: Let G be a τ_i-ω-open set such that $A \subseteq G$. By hypothesis $\tau_j \text{spcl}(A) \subseteq \text{int}(G) \subseteq G$. Hence A is (τ_i, τ_j)-$\hat{\eta}^*$-closed.

Example 6.2.19 $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, X\}$. Then $\hat{\eta}^*(\tau_1, \tau_2) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$, $\beta^*(\tau_1, \tau_2) = \{\emptyset, \{b, c\}, X\}$. Let $A = \{b\}$. Then A is (τ_1, τ_2)-$\hat{\eta}^*$-closed but not (τ_1, τ_2)-β^*-closed.

The following example shows that (τ_i, τ_j)-β^*-closed sets and (τ_i, τ_j)-rg closed set are independent.

Example 6.2.20 Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a,b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then $\text{rg}-(\tau_1, \tau_2) = \{\emptyset, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, X\}$, $\beta^*(\tau_1, \tau_2) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$. We see that the set $\{a, b\}$ is (τ_1, τ_2)-rg closed but not (τ_1, τ_2)-β^*-closed. Also $\{b\}$ is (τ_1, τ_2)-β^*-closed but not (τ_1, τ_2)-rg closed.

The above findings are given below in pictorial representation as follows.

![Fig(vi)](image-url)
Remark 6.2.21 The following example shows that the intersection (resp.union) of two \((\tau_i,\tau_j)\)-\(\beta^*\)-closed sets is not \((\tau_i,\tau_j)\)-\(\beta^*\)-closed.

Example 6.2.22 Let \(X=\{a, b, c, d\}\), \(\tau_1=\{\varnothing, \{a\}, \{b\}, \{a, b\}, X\}\) and \(\tau_2=\{\varnothing, \{a, b\}, X\}\). Then \(\beta^*(\tau_1,\tau_2)=P(X)-\{a, b\}\). Here \(\{a,b,c\}\) and \(\{a, b, d\}\) are \((\tau_1,\tau_2)\)-\(\beta^*\)-closed sets but \(\{a, b, c\}\cap\{a, b, d\}=\{a, b\}\) is not \((\tau_1,\tau_2)\)-\(\beta^*\)-closed. Also \(\{a\}\) and \(\{b\}\) are \((\tau_1,\tau_2)\)-\(\beta^*\)-closed. But \(\{a\}\cup\{b\}=\{a, b\}\) is not \((\tau_1,\tau_2)\)-\(\beta^*\)-closed.

Proposition 6.2.23 Let \(A\) be a subset of bitopological space \((X, \tau_1, \tau_2)\). If \(A\) is \((\tau_i,\tau_j)\)-\(\beta^*\)-closed, then \(\tau_j\text{spcl}(A)-A\) does not contain any non-empty \(\tau_i\)-\(\omega\)-closed set.

Proof: Let \(A\) be a \((\tau_i,\tau_j)\)-\(\beta^*\)-closed set and \(F\) be a \(\tau_i\)-\(\omega\)-closed set contained in \(\tau_j\text{spcl}(A)-A\). Since \(A\in\beta^*(\tau_i,\tau_j)\), \(\tau_j\text{spcl}(A)\subseteq\text{int}(F^c)\subseteq F^c\). Consequently, \(F\subseteq (\tau_j\text{spcl}(A))^c\). But \(F\subseteq \tau_j\text{spcl}(A)\). Hence \(F\) must be empty.

Remark 6.2.24 The converse of Proposition-6.2.23 is not true. It is evident from the following example.

Example 6.2.25 Let \(X=\{a, b, c, d\}\), \(\tau_1=\{\varnothing, \{a, b, c\}, X\}\) and \(\tau_2=\{\varnothing, \{a\}, X\}\). Then \(\beta^*(\tau_1,\tau_2)=\{\varnothing, \{b\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}\). Let \(A=\{b\}\). Then \(\tau_2\text{spcl}(A)-A = b - b = \varnothing\), but \(A\) is not \((\tau_1,\tau_2)\)-\(\beta^*\)-closed.

Proposition 6.2.26 If \(A\) is \((\tau_i,\tau_j)\)-\(\beta^*\)-closed and \(A\subseteq B\subseteq \tau_j\text{spcl}(A)\), Then \(B\) is \((\tau_i,\tau_j)\)-\(\beta^*\)-closed.

Proof: Let \(U\) be a \(\tau_i\)-\(\omega\)-open set of \(X\) such that \(B\subseteq U\). Then \(A\subseteq U\). Since \(A\) is \((\tau_i,\tau_j)\)-\(\beta^*\)-closed, we get \(\tau_j\text{spcl}(A)\subseteq\text{int}(U)\). Now \(\tau_j\text{spcl}(B)\subseteq\tau_j\text{spcl}(\text{spcl}(\tau_j\text{spcl}(A)))\). Using lemma 1.1.6. Thus \(B\) is \((\tau_i,\tau_j)\)-\(\beta^*\)-closed.
Proposition 6.2.27 If A is τ_i-ω-open and (τ_i,τ_j)-β^*-closed, then A is τ_j-semi-preclosed

Proof: Since $A \subseteq A$. Since A is τ_i-ω-open and (τ_i,τ_j)-β^*-closed, we have τ_j-$\text{spcl}(A) \subseteq \text{int}(A) \subseteq A$. Therefore A is τ_j semi-preclosed.

Proposition 6.2.28 For each x of $(X,\tau_1,\tau_2),\{x\}$ is τ_i-ω-closed or $\{x\}^c$ is (τ_i,τ_j)-β^*-closed.

Proof: Suppose $\{x\}$ is not τ_i-ω-closed. Since $\{x\}^c$ is not τ_i-ω-open, the only τ_i-ω-open set containing $\{x\}^c$ is X. But τ_j-$\text{spcl}(\{x\}^c) \subseteq X = \text{int} X$. Therefore $\{x\}^c$ is (τ_i,τ_j)-β^*-closed.

Proposition 6.2.29 If $\tau_1 \subset \tau_2$ in (X,τ_1,τ_2) then $\beta^*(\tau_2,\tau_1) \supset \beta^*(\tau_1,\tau_2)$.

Proof: Let A be a (τ_2,τ_1)-β^*-closed set and G be a τ_1-ω-open set containing A. Since $\tau_1 \subset \tau_2$, G is a τ_2-ω-open set and since A is a (τ_2,τ_1)-β^*-closed set τ_1-$\text{spcl}(A) \subseteq \text{int}(G)$. But τ_2-$\text{spcl}(A) \subseteq \tau_1$-$\text{spcl}(A)$. Therefore τ_2-$\text{spcl}(A) \subseteq \text{int}(G)$, Thus A is a (τ_1,τ_2)-β^*-closed set.

We now introduce (τ_i,τ_j)-β^*-open sets in bitopological spaces as follows.

Definition 6.2.30 A subset A in a bitopological space (X,τ_1,τ_2) is called (τ_i,τ_j)-β^*-open if A^c is (τ_i,τ_j)-β^*-closed in (X,τ_1,τ_2).

Remark 6.2.31 The union(intersection) of any two (τ_i,τ_j)-β^*-open set is not (τ_i,τ_j)-β^*-open.

Example 6.2.32 Let $X = \{a, b, c, d\}$, $\tau_1 = \{\varnothing, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\varnothing, \{a, b\}, X\}$. Then (τ_1,τ_2)-β^*-open sets are $P(X) - \{c, d\}$. We see that $\{c\} \cup \{d\} = \{c, d\}$ and $\{a, c, d\} \cap \{b, c, d\} = \{c, d\}$ are not (τ_1,τ_2)-β^*-open sets though individually they are β^*-open sets.
Theorem 6.2.33 A subset A of (X,τ_1,τ_2) is (τ_i,τ_j)-β*-open if and only if $\text{cl}(F) \subset \tau_j$-spint$(A)$ whenever F is τ_i-ω-closed and $F \subset A$.

Proof: Suppose that A is (τ_i,τ_j)-β*-open and $F \subset A$, where F is τ_i-ω-closed. Then $A^c \subset F^c$ and F^c is τ_i-ω-open in (X,τ_1,τ_2). Hence we get τ_ispcl$(A^c) \subset \text{int}(F^c)$=\left((\text{int}(U))^c\right)^c=\text{int}(U)$. Thus τ_i-spcl(A^c) is (τ_i,τ_j)-β*-closed. Conversely, suppose $A^c \subset U$ and U is τ_i-ω-open. Then $U^c \subset A$ and U^c is τ_i-ω-closed. Therefore by hypothesis, $\text{cl}(U^c) \subset \tau_j$-spint (A) implies $(\tau_j$-spint$(A))^c \subset (\text{cl}(U^c))^c=\text{int}(U)$ implies A^c is (τ_i,τ_j)-β*-open. Thus A is (τ_i,τ_j)-β*-open.

Proposition 6.2.34 If τ_j-spint $(A) \subset B \subset A$ and A is (τ_i,τ_j)-β*-open, then B is (τ_i,τ_j)-β*-open.

Proof: Suppose that τ_j-spint$(A) \subset B \subset A$ and A is (τ_i,τ_j)-β*-open. Then $A^c \subset B^c \subset \tau_j$-spcl$(A^c)$ and A^c is (τ_i,τ_j)-β*-closed. By Proposition 6.2.26, B^c is (τ_i,τ_j)-β*-closed. Thus B is (τ_i,τ_j)-β*-open.

Proposition 6.2.35 If a subset A of a bitopological space (X,τ_1,τ_2) is (τ_i,τ_j)-β*-closed then τ_j-spcl(A)-A is (τ_i,τ_j)-β*-open.

Proof: Suppose that A is (τ_i,τ_j)-β*-closed. Let $F \subset \text{spcl}(A)$-A where F is a τ_i-ω-closed set. By Proposition 6.2.23, $F = \phi$. Therefore, $\text{cl}(F) \subset \tau_j$-spint $(\tau_j$spcl(A)-A) and so by Theorem 6.2.33, τ_j-spcl(A)-A is (τ_i,τ_j)-β*-open.

Remark 6.2.36 The converse of Proposition 6.2.35 does not hold. The subset $A=\{c\}$ of (X,τ_1, τ_2) in Example 6.2.25 is not (τ_i,τ_j)-β*-closed. However τ_2-spcl(A)-A=$\{a, c\}$-\{c\}=$\{a\}$ is (τ_i,τ_j)-β*-open in (X,τ_1, τ_2).
6.3 Applications

As applications of \((\tau_i, \tau_j)-\beta^*-\text{closed sets}\), two new bitopological spaces namely \((\tau_i, \tau_j)-T_{\beta^*}\) and \((\tau_i, \tau_j)-spT_{\beta^*}\) spaces have been introduced and obtained a characterization for the bitopological space \((\tau_i, \tau_j)-\text{semi-pre } T_{1/2}\).

Definition 6.3.1 A bitopological space \((X, \tau_1, \tau_2)\) is said to be a \((\tau_i, \tau_j)-T_{\beta^*}\)-space if every \((\tau_i, \tau_j)-\beta^*\)-closed set is \(\tau_j\)-closed.

Proposition 6.3.2 If a bitopological space \((X, \tau_1, \tau_2)\) is \((\tau_i, \tau_j)-T_{\beta^*}\)-space, then \(\{x\}\) is \(\tau_i\)-\(\omega\)-closed or \(\tau_j\)-open for each \(x \in X\).

Proof: Suppose \(\{x\}\) is not \(\tau_i\)-\(\omega\)-closed. Since \(\{x\}\) is not \(\tau_i\)-\(\omega\)-open, the only \(\tau_i\)-\(\omega\)-open set containing \(\{x\}\) is \(X\). Therefore \(\tau_j\)-spcl(\(\{x\}\)) \(\subseteq X = \text{int } X\) implies \(\{x\}\) is \((\tau_i, \tau_j)-\beta^*\)-closed. Since \((X, \tau_1, \tau_2)\) is a \((\tau_i, \tau_j)-T_{\beta^*}\)-space, \(\{x\}\) is \(\tau_j\)-closed. Thus \(\{x\}\) is \(\tau_j\)-open.

Remark 6.3.3 The following example supports the fact that the converse of proposition -6.3.2 is not true.

Example 6.3.4 Let \(X = \{a, b, c\}, \tau_1 = \{\varnothing, \{a\}, \{a, b\}, \{a, c\}, X\}\) and \(\tau_2 = \{\varnothing, \{a\}, \{b, c\}, X\}\). Then \(\beta^*(\tau_1, \tau_2) = P(X)\). Here \(\{b\}\) and \(\{c\}\) are \(\tau_j\)-\(\omega\)-closed and \(\{a\}\) is \(\tau_2\)-open. But \((X, \tau_1, \tau_2)\) is not \((\tau_i, \tau_j)-T_{\beta^*}\)-space since \(\{c, a\}\) is \((\tau_1, \tau_2)-\beta^*\)-closed but not \(\tau_2\)-closed.

Proposition 6.3.5 Every \((\tau_i, \tau_j)-T_{\eta^*}\) space is \((\tau_i, \tau_j)-T_{\beta^*}\)-space but not conversely.

Proof: Let \((X, \tau_1, \tau_2)\) be a \((\tau_i, \tau_j)-T_{\eta^*}\) space and \(A\) be a \((\tau_i, \tau_j)-\beta^*\)-closed set. Then \(A\) is \((\tau_1, \tau_2)-\eta^*\)-closed by proposition 5.2.9. By hypothesis \(A\) is \(\tau_j\)-closed. Hence \((X, \tau_1, \tau_2)\) is a \((\tau_i, \tau_j)-T_{\beta^*}\)-space.
Example 6.3.6 If \((X, \tau_1, \tau_2)\) is the space as defined in Example 6.2.19, then the space is \((\tau_i, \tau_j)\) \(T_{\beta^*}\)-space but it is not a \((\tau_i, \tau_j)\) \(T_{\eta^*}\)-space, since \(\{c\}\) is \((\tau_1, \tau_2)\)-\(\eta^*\)-closed but it is not \(\tau_2\)-closed.

Definition 6.3.7 A bitopological space \((X, \tau_1, \tau_2)\) is said to be \((\tau_i, \tau_j)\)-\(T_{gsp}\)-space if every \((\tau_i, \tau_j)\)-gsp-closed set is \(\tau_j\)-closed.

Proposition 6.3.8 Every \((\tau_i, \tau_j)\)-\(T_{gsp}\)-space is \((\tau_i, \tau_j)\)-\(T_{\beta^*}\)-space but not conversely.

Proof: Let \((X, \tau_1, \tau_2)\) be a \((\tau_i, \tau_j)\)-\(T_{gsp}\)-space and \(A\) be a \((\tau_i, \tau_j)\)-\(\beta^*\)-closed set. Then by Proposition-6.2.16, \(A\) is \((\tau_i, \tau_j)\)-gsp-closed. By hypothesis \(A\) is \(\tau_j\)-closed. Hence \((X, \tau_1, \tau_2)\) is a \((\tau_i, \tau_j)\)-\(T_{\beta^*}\)-space.

Example 6.3.9 Let \((X, \tau_1, \tau_2)\) be the space in Example 6.2.19. Then \(gsp-(\tau_i, \tau_j) = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}\). Then \(\{a, c\}\) is not \(\tau_2\)-closed. Therefore the space is not a \((\tau_i, \tau_j)T_{gsp}\) space. But the space is a \((\tau_i, \tau_j)\)-\(T_{\beta^*}\)-space.

Definition 6.3.10 A bitopological space \((X, \tau_1, \tau_2)\) is said to be \((\tau_i, \tau_j)\)-\(T_{gspr}\)-space if every \((\tau_i, \tau_j)\)-gspr closed set is \(\tau_j\)-closed.

Proposition 6.3.11 Every \((\tau_i, \tau_j)\)-\(T_{gspr}\)-space is \((\tau_i, \tau_j)\)-\(T_{\beta^*}\) space but not conversely.

Proof: Let \((X, \tau_1, \tau_2)\) be a \((\tau_i, \tau_j)\)-\(T_{gspr}\)-space and \(A\) be a \((\tau_i, \tau_j)\)-\(\beta^*\)-closed set. Then by Proposition-6.2.12 \(A\) is \((\tau_i, \tau_2)\)-gspr-closed. By hypothesis \(A\) is \(\tau_j\)-closed. Therefore \((X, \tau_1, \tau_2)\) is a \((\tau_i, \tau_j)\)-\(T_{\beta^*}\)-space.

Example 6.3.12 Let \(X=\{a, b, c\}\), \(\tau_1=\{\emptyset, \{a\}, \{b, c\}, X\}\) and \(\tau_2=\{\emptyset, \{a\}, X\}\). Then \(\beta^*(\tau_1, \tau_2) = \{\emptyset, \{b, c\}, X\}\) and \(gspr-(\tau_1, \tau_2) = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}\).
{c, a}, X}. The set \{a, b\} is not \(\tau_2\)-closed. Therefore the space \((X, \tau_1, \tau_2)\) is not a \((\tau_i, \tau_j)\) T_{gsp}-space but it is a \((\tau_i, \tau_j)\) T_{\beta^*}-space.

Definition 6.3.13 A bitopological space \((X, \tau_1, \tau_2)\) is said to be

(i) \((\tau_i, \tau_j)\)-sp\(\beta^*\) space if every \((\tau_1, \tau_2)\)-\(\beta^*\)-closed set is \(\tau_j\)-semi pre closed.

(ii) \((\tau_i, \tau_j)\)-semi-pre-\(T_{1/2}\) if every \((\tau_1, \tau_2)\)-gsp-closed set is \(\tau_j\)-semi-pre closed.

Proposition 6.3.14 Every \((\tau_i, \tau_j)\)-\(T_{\beta^*}\) space is a \((\tau_i, \tau_j)\)-sp\(\beta^*\) space, but not conversely.

Proof: Let \(A\) be a \((\tau_1, \tau_2)\)-\(\beta^*\)-closed set. Since \((X, \tau_1, \tau_2)\) is a \((\tau_i, \tau_j)\)-\(T_{\beta^*}\) space, \(A\) is \(\tau_j\)-closed. Then \(A\) is \(\tau_j\)-semi-preclosed which implies that \((X, \tau_1, \tau_2)\) is a \((\tau_i, \tau_j)\)-sp\(\beta^*\) space.

Example 6.3.15 Let \((X, \tau_1, \tau_2)\) be the space as defined in Example 6.3.4. We see that it is not a \((\tau_i, \tau_j)\)\(T_{\beta^*}\) space but it is a \((\tau_i, \tau_j)\)-sp\(\beta^*\) space.

Theorem 6.3.16 A bitopological space \((X, \tau_1, \tau_2)\) is a \((\tau_i, \tau_j)\)-sp\(\beta^*\) space if and only if \(\{x\}\) is either \(\tau_j\) semi-preopen or \(\tau_i\)-\(\omega\)-closed for each \(x \in X\).

Proof: Let \(x \in X\) and suppose that \(\{x\}\) is not \(\tau_i\)-\(\omega\)-closed. Since \(\{x\}^c\) is not \(\tau_i\)-\(\omega\)-open, the only \(\tau_i\)-\(\omega\) open set containing \(\{x\}^c\) is \(X\). Therefore \(\tau_j\)-spcl \(\{x\}^c\) \(\subset X = \text{int } X\) which implies \(\{x\}^c\) is \((\tau_1, \tau_2)\)-\(\beta^*\)-closed. Since \((X, \tau_1, \tau_2)\) is a \((\tau_i, \tau_j)\)-sp\(\beta^*\) space, \(\{x\}^c\) is \(\tau_j\)-semi-preclosed. Thus \(\{x\}\) is \(\tau_j\)-semi-preopen.

Conversely, let \(A\) be a \((\tau_i, \tau_j)\)-\(\beta^*\)-closed set. For any \(x \in \tau_j\)-spcl\(\{A\}\); \(\{x\}\) is \(\tau_j\) semi-pre open or \(\tau_i\)-\(\omega\)-closed by assumption.
Case(i): Suppose that \(\{x\} \) is \(\tau_i \)-\(\omega \)-closed. If \(x \notin A \), then \(\tau_j \)-spcl(A)-A contains the \(\tau_i \)-\(\omega \)-closed set \(\{x\} \). But A is \((\tau_i, \tau_j) \)-\(\beta^* \)-closed. This is a contraction to Proposition, 6.2.23. Thus \(x \in A \).

Case(ii): Suppose that \(\{x\} \) is \(\tau_j \)-semi preopen. Since \(x \in \tau_j \)-spcl(A), \(\{x\} \cap A \neq \emptyset \). Thus \(x \in A \).

In both the cases \(\tau_j \)-spcl(A)\(\subseteq A \). Hence, A is \(\tau_j \)-semi pre closed implies that \((X, \tau_1, \tau_2) \) is a \((\tau_i, \tau_j) \)-sp\(T_{\beta^*} \) space.

Proposition 6.3.17 Every \((\tau_i, \tau_j) \)-semi-pre-\(T_{1/2} \)-space is \((\tau_i, \tau_j) \)-sp\(T_{\beta^*} \) space but not conversely.

Proof: Let \((X, \tau_1, \tau_2) \) be a \((\tau_i, \tau_j) \)-semi-pre-\(T_{1/2} \)-space and F be a \((\tau_i, \tau_j) \)-\(\beta^* \)-closed. Then F is \((\tau_i, \tau_j) \)-gsp-closed by Proposition 6.2.16. Also F is \(\tau_j \)-semi preclosed by hypothesis. Thus \((X, \tau_1, \tau_2) \) is \((\tau_i, \tau_j) \)-sp\(T_{\beta^*} \) space.

Example 6.3.18 Let \((X, \tau_1, \tau_2) \) be the space defined as in example 6.2.10. Here \(\beta^*(\tau_1, \tau_2) = \{\emptyset, \{c\}, \{b, c\}, \{a, c\}, X\} \) and \(\text{GSPC-(} \tau_1, \tau_2) = \{\emptyset, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\} \). Then \((X, \tau_1, \tau_2) \) is a \((\tau_1, \tau_2) \)-gsp-closed set but not \((\tau_i, \tau_j) \)-semi-pre-\(T_{1/2} \) space since \(\{a, c\} \) is a \((\tau_1, \tau_2) \)-gsp-closed set but it is not \(\tau_2 \)-semi-pre closed.

6.4 \(\beta^*(\tau_i, \tau_j) \)-\(\sigma_k \) continuous maps

This section contains the concepts of \(\beta^*(\tau_i, \tau_j) \)-\(\sigma_k \)-continuity, \(\beta^* \)-bicontinuity, \(\beta^* \)-s-bicontinuity and pairwise \(\beta^* \)-irresolute maps in bitopological space. Further the properties of these maps have been studied.
Definition 6.4.1 A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $\beta^*(\tau_i, \tau_j)$$-\sigma_k$-continuous maps if the inverse image of every σ_k-closed set is $(\tau_i, \tau_j)^{-}\beta^*$-closed.

Remark 6.4.2 If $\tau_1=\tau_2=\tau$ and $\sigma_1=\sigma_2=\sigma$ in Definition 6.4.1, then the $\beta^*(\tau_i, \tau_j)$$-\sigma_k$-continuous maps coincide with β^*-continuous maps in topological spaces.

Proposition 6.4.3 If a map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\tau_j^{-}\sigma_k$-continuous and if (X, τ) is T_0-space then it is $\beta^*(\tau_i, \tau_j)$$-\sigma_k$-continuous.

Proof: Let V be a σ_k-closed set. Then $f^{-1}(V)$ is τ_j-closed and by Proposition 6.2.6, $f^{-1}(V)$ is $(\tau_i, \tau_j)^{-}\beta^*$-closed in (X, τ_1, τ_2). Therefore, f is $\beta^*(\tau_i, \tau_j)$$-\sigma_k$-continuous.

Remark 6.4.4 The converse of the Proposition 6.4.3 is not true by the following example.

Example 6.4.5 Let $X=Y=\{a, b, c\}$, $\tau_1=\{\emptyset, \{a\}, X\}$, $\tau_2=\{\emptyset, \{b\}, X\}$, $\sigma_1=\{\emptyset, \{a\}, \{a, b\}, Y\}$ and $\sigma_2=\{\emptyset, \{b\}, \{b, c\}, Y\}$. Here $\beta^*(\tau_1, \tau_2)=P(X)$. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity map. Clearly f is $\beta^*(\tau_1, \tau_2)-\sigma_2$ continuous but not $\tau_1^{-}\sigma_2$-continuous, since $\{a, c\}$ is σ_2-closed but $f^{-1}(\{a, c\})=\{a, c\}$ is not τ_1-closed.

Definition 6.4.6 A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called GSP $(\tau_i, \tau_j)$$-\sigma_k$-continuous, if the inverse image of every σ_k-closed set is a (τ_i, τ_j)-gsp-closed set.

Proposition 6.4.7 If a map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\beta^*(\tau_i, \tau_j)$$-\sigma_k$-continuous, then it is GSP$(\tau_i, \tau_j)$$-\sigma_k$-continuous.
Proof: Let V be a σ_k-closed set, then $f^{-1}(V)$ is $(\tau_i, \tau_j)^{-}\beta^*$ closed in (X, τ_1, τ_2). By Proposition 6.2.16, $f^{-1}(V)$ is (τ_i, τ_j)-gsp-closed and so f is GSP$(\tau_i, \tau_j^-\sigma_k$-continuous.

Remark 6.4.8 The converse of Proposition-6.4.7 need not be true. It is evident from the following example.

Example 6.4.9 Let $X=Y=\{a, b, c\}$, $\tau_1=\{\varnothing, \{a\}, \{b, c\}, X\}$, $\tau_2=\{\varnothing, \{a\}, X\}$, $\sigma_1=\{\varnothing, \{a\}, \{a, b\}, Y\}$, $\sigma_2=\{\varnothing, \{b\}, Y\}$. Then $\beta^*(\tau_1, \tau_2)=\{\varnothing, \{b\}, X\}$ and GSP$(\tau_1, \tau_2)=P(X)\setminus\{a\}$. Let $f: (X, \tau_1, \tau_2)\to (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is GSP(τ_1, τ_2)-σ_2-continuous, but f is not $\beta^*(\tau_1, \tau_2)$-σ_2-continuous, since $\{a, c\}$ is σ_2-closed in (Y, σ_1, σ_2) but $f^{-1}(\{a, c\})=\{a, c\}$ is not $(\tau_1, \tau_2)^{-}\beta^*$-closed in (X, τ_1, τ_2).

Proposition 6.4.10 If a map $f: (X, \tau_1, \tau_2)\to (Y, \sigma_1, \sigma_2)$ is $D^*(\tau_i, \tau_j)$-σ_k-continuous and if (X, τ_i) is T_{ω} space then it is $\beta^*(\tau_i, \tau_j)$-σ_k-continuous.

Proof: Let V be a σ_k-closed set. Then $f^{-1}(V)$ is $(\tau_i, \tau_j)^{-}\beta^*$-closed in (X, τ_1, τ_2). By Proposition -6.2.9, $f^{-1}(V)$ is $(\tau_i, \tau_j)^{-}\beta^*$-closed and so f is $\beta^*(\tau_i, \tau_j)$-σ_k-continuous.

The converse of Proposition 6.4.10 is not true. It is seen from the following example.

Example 6.4.11 Let $X= Y=\{a, b, c\}$, $\tau_1=\{\varnothing, \{a\}, X\}$, $\tau_2=\{\varnothing, \{b\}, X\}$, $\sigma_1=\{\varnothing, \{b\}, \{a\}, Y\}$, $\sigma_2=\{\varnothing, \{b\}, \{c\}, \{b, c\}, Y\}$ Then $D^*(\tau_1, \tau_2)=\{\varnothing, \{a, c\}, \{b, c\}, X\}$ and $\beta^*(\tau_1, \tau_2)=P(X)$. Let $f: (X, \tau_1, \tau_2)\to (Y, \sigma_1, \sigma_2)$ be the identity map. Clearly f is $\beta^*(\tau_1, \tau_2)$-σ_2-continuous but not $D^*(\tau_1, \tau_2)$-σ_2-continuous, since $\{a, b\}$ is σ_2-closed in Y but $f^{-1}(\{a, b\})=\{a, b\}$ is not $(\tau_1, \tau_2)^{-}\beta^*$-closed in X.

122
Remark 6.4.12 We have the following diagram from the above findings, assuming that \((X, \tau_i)\) is a \(T_\omega\) space.

\[
\begin{array}{c}
D^*(\tau_i, \tau_j)-\sigma_k\text{-continuous} \\
\downarrow \\
\tau_j-\sigma_k\text{-continuity} \\
\Rightarrow \\
\beta^*(\tau_i, \tau_j)-\sigma_k\text{-continuous} \\
\downarrow \\
GSP(\tau_i, \tau_j)-\sigma_k\text{-continuous}
\end{array}
\]

Fig(vii)

Definition 6.4.13 A map \(f: (X, \tau_1, \tau_2)\rightarrow(Y, \sigma_1, \sigma_2)\) is called \(\beta^*\)-bi-continuous if \(f\) is \(\beta^*(\tau_1, \tau_2)-\sigma_2\)-continuous and \(\beta^*(\tau_2, \tau_1)-\sigma_1\)-continuous.

Definition 6.4.14 A map \(f: (X, \tau_1, \tau_2)\rightarrow(Y, \sigma_1, \sigma_2)\) is called \(\beta^*\)-strongly-bi-continuous (briefly \(\beta^*\)-s-bicontinuous) if \(f\) is \(\beta^*\)-bi-continuous, \(\beta^*(\tau_2, \tau_1)-\sigma_2\)-continuous and \(\beta^*(\tau_1, \tau_2)-\sigma_1\)-continuous.

Proposition 6.4.15 Let \(f: (X, \tau_1, \tau_2)\rightarrow(Y, \sigma_1, \sigma_2)\) be a map, and \((X, \tau_1)\) be a \(T_\omega\)-space. Then

(i) if \(f\) is bi-continuous, then \(f\) is \(\beta^*\)-bi-continuous.

(ii) if \(f\) is s-bi continuous, then \(f\) is \(\beta^*\)-s-bicontinuous.

Proof: (i) Let \(f: (X, \tau_1, \tau_2)\rightarrow(Y, \sigma_1, \sigma_2)\) be bi-continuous. Then \(f\) is \(\tau_1-\sigma_1\)-continuous and \(\tau_2-\sigma_2\)-continuous and so by Proposition 6.4.3, \(f\) is \(\beta^*(\tau_2, \tau_1)-\sigma_1\)-continuous and \(\beta^*(\tau_1, \tau_2)-\sigma_2\)-continuous. Therefore \(f\) is \(\beta^*\)-bi-continuous.

(ii) similar to (i)
The converses of the Proposition 6.4.15 are not true. It is evident from the following example

Example 6.4.16 Let \(X = \{a, b, c\} \), \(\tau_1 = \{\varnothing, \{a\}, \{b\}, \{a, b\}, X\} \), \(\tau_2 = \{\varnothing, \{a\}, \{a, b\}, X\} \); \(Y = \{p, q\} \), \(\sigma_1 = \{\varnothing, \{q\}, Y\} \), \(\sigma_2 = \{\varnothing, \{p\}, Y\} \). Then \(\beta^*(\tau_1, \tau_2) = P(X) - \{a, b\} \). Define \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) by \(f(a) = f(c) = q \) and \(f(b) = p \). Then \(f \) is \(\beta^* \)-bi-continuous but not bi-continuous, since \(f \) is not \(\tau_1 - \sigma_1 \)-continuous. Also we see that \(f \) is \(\beta^* \)-s-bi-continuous but not s-bi continuous, since \(f \) is not \(\tau_2 - \sigma_1 \) continuous, that is \(f^{-1}(\{p\}) = \{b\} \) is not \(\tau_2 \)-closed.

The above findings may be shown using the following diagram. Assume that \((X, \tau_i) \) is a \(T_\omega \) space.

![Diagram](https://via.placeholder.com/150)

Fig (viii)

Definition 6.4.17 A map \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is said to be pairwise \(\beta^* \)-irresolute if the inverse image of each \((\sigma_k, \sigma_m) \)-\(\beta^* \)-closed set of \((Y, \sigma_1, \sigma_2) \) is \((\tau_i, \tau_j) \)-\(\beta^* \)-closed in \((X, \tau_1, \tau_2) \).

Proposition 6.4.18 If \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is pairwise \(\beta^* \)-irresolute, and if \((Y, \sigma_i) \) is a \(T_\omega \) space, then \(f \) is \(\beta^*(\tau_i, \tau_j) \)-\(\sigma_m \)-continuous.

Proof: Let \(F \) be any \(\sigma_m \)-closed set in \((Y, \sigma_1, \sigma_2) \). Then \(F \) is \((\sigma_k, \sigma_m) \)-\(\beta^* \)-closed by Proposition 6.2.6. By hypothesis \(f^{-1}(F) \) is \((\tau_i, \tau_j) \)-\(\beta^* \)-closed in \(X \).
Remark 6.4.19 The following example shows that the converse of Proposition 6.4.19 is not true.

Example 6.4.20 Let $X = \{a, b, c\} = Y$, $\tau_1 = \{\emptyset, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{b\}, X\}$, $\sigma_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$, $\sigma_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then $\beta^*(\tau_1, \tau_2) = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$, $\beta^*(\sigma_1, \sigma_2) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{c, a\}, Y\}$. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by $f(a) = b$, $f(b) = a$, $f(c) = c$. Then f is $\beta^*(\tau_1, \tau_2)$-continuous but f is not pairwise β^*-irresolute since for the (σ_1, σ_2)-closed set $\{b\}$, $f^{-1}(\{b\}) = \{a\}$ is not (τ_1, τ_2)-β^*-closed in (X, τ_1, τ_2).

Proposition 6.4.21 If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \delta_1, \delta_2)$ are two pairwise β^*-irresolute maps, then their composition is also pairwise β^*-irresolute.

Proof: Let A be a (δ_1, δ_2)-β^*-closed set in (Z, δ_1, δ_2). Since g is pairwise β^*-irresolute, $g^{-1}(A)$ is (σ_k, σ_m)-β^*-closed in (Y, σ_1, σ_2). Again by hypothesis $f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)$ is (τ_i, τ_j)-β^*-closed in (X, τ_1, τ_2) and so $g \circ f$ is pairwise β^*-irresolute.

Proposition 6.4.22 A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called

(i) τ_i-σ_m-\(\omega\)-open if the image $f(U)$ is ω-open in σ_m for every ω-open set U in τ_i.

(ii) τ_i-σ_k-\(\omega\) continuous if for every σ_k-ω-open set U in (Y, σ_1, σ_2) the inverse image $f^{-1}(U)$ is τ_i-ω-open in (X, τ_1, τ_2) and

(iii) τ_j-σ_m-β-continuous if for every σ_m-semi preclosed set F in (Y, σ_1, σ_2), the inverse image $f^{-1}(F)$ is τ_j-semi preclosed in (X, τ_1, τ_2).
Proposition 6.4.23 If \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is bijective, \(\tau_i-\sigma_k \)-continuous, \(\tau_i-\sigma_k \)-\(\omega \)-open and \(\tau_j-\sigma_m \)-\(\beta \) continuous, then \(f \) is pairwise \(\beta^* \)-irresolute.

Proof: Let \(A \) be \((\sigma_k, \sigma_m) \)-\(\beta^* \)-closed in \((Y, \sigma_1, \sigma_2) \) and \(U \) be any \(\tau_i-\omega \)-open set in \((X, \tau_1, \tau_2) \) such that \(f^{-1}(A) \subseteq U \). Then \(A \subseteq f(U) \). Since \(f \) is \(\tau_i-\sigma_k \)-\(\omega \)-open, \(f(U) \) is \(\sigma_k \)-\(\omega \)-open in \((Y, \sigma_1, \sigma_2) \). Since \(A \) is \((\sigma_k, \sigma_m) \)-\(\beta^* \)-closed in \((Y, \sigma_1, \sigma_2) \) and \(f \) is \(\tau_i-\sigma_k \)-continuous, \(\sigma_m\text{-spcl}(A) \subseteq \text{int}(f(U)), f^{-1}(\sigma_m\text{-spcl}(A)) \subseteq f^{-1}(\text{int}(f(U))) = \text{int} U \). Also \(f \) is \(\tau_j-\sigma_m \)-\(\beta \) continuous. Therefore \(f^{-1}(\sigma_m\text{-spcl}(A)) \) is \(\tau_j \) semi pre closed in \((X, \tau_1, \tau_2) \). Hence \(\tau_j\text{-spcl}(f^{-1}(\sigma_m\text{-spcl}(A))) \subseteq \text{int}(U) \). So \(\tau_j\text{-spcl}(f^{-1}(A)) \subseteq \tau_j\text{-spcl}(f^{-1}(\sigma_m\text{-spcl}(A))) \subseteq \text{int}(U) \) implies \(f^{-1}(A) \) is \((\tau_i, \tau_j) \)-\(\beta^* \)-closed in \((X, \tau_1, \tau_2) \).