CHAPTER VI

SOME FIXED POINT THEOREMS ON
CONTRACTIVE TYPE MAPPINGS
CHAPTER VI

SOME FIXED POINT THEOREMS ON CONTRACTIVE TYPE MAPPINGS*

6.1. Pachpatte [39] proved some unique fixed point theorems for a mapping T of a metric space (X, d) into itself satisfying

\[d(Tx, Ty) \leq q \max \left\{ d(x, y) ; \frac{d(y, Ty)[1+d(x,Tx)]}{1+d(x,y)} \right\} \]

\[\frac{1}{2} \cdot \frac{d(x,Ty) \left[1+d(x,Tx) + d(y,Tx) \right]}{1 + d(x,y)} \]

for all x, y in X, where 0 < q < 1.

Using the technique of Rhoades [48] for a self mapping T of a closed convex subset X of a normed space satisfying contractive condition (6.1.1) of Pachpatte, Yuel and Sharma [66] have shown that if \{x_n\}, the sequence of Mann iterates associated with T converges in X then it converges to a fixed point of T.

The same result has also been extended for two mappings.

The object of the present chapter is to generalize the result of Yuel and Sharma [66] and to obtain two fixed point theorems for self mappings defined on a subset of normed space using G-iterative process.

6.2. RESULTS! We establish the following:

(*) Pure and Applied Mathematika Sciences, Likely to appear in March, 94.
THEOREM 1. Let X be a closed convex subset of a normed linear space N and let T be a self mapping on X satisfying contractive condition (6.1.1) and ${\{x_n\}}$ be the sequence of G-iterates associated with T defined as follows:

Let $x_0, x_1 \in X$ and for $n \geq 0$

$$x_{n+2} = (\lambda_n - \mu_n) x_{n+1} + \lambda_n T x_{n+1} + (1 - \mu_n) T x_n$$

where $\{\lambda_n\}$ and $\{\mu_n\}$ satisfy

(i) $\lambda_0 = \mu_0 = 1$

(ii) $0 < \lambda_n < 1$, $n > 0$ and $\mu_n \geq \lambda_n$

for $n \geq 0$

(iii) $\lim_{n \to \infty} \lambda_n = h > 0$

(iv) $\lim_{n \to \infty} \mu_n = 1$

If ${\{x_n\}}$ converges in X, then it converges to a fixed point of T.

PROOF. Let $z \in X$ such that

$$\lim_{n \to \infty} x_n = z .$$

We shall show that z is the fixed point of T. Now consider

$$\|z - T z\| \leq \|z - x_{n+2}\| + \|x_{n+2} - T z\|$$

$$\leq \|z - x_{n+2}\| + \|(\mu_n - \lambda_n) x - T z\|$$

$$+ \lambda_n \|T x_{n+1} - T z\|$$

$$\leq \|z - x_{n+2}\| + (\mu_n - \lambda_n) \|x - T z\|$$

$$+ \lambda_n \|T x_{n+1} - T z\| + (1 - \mu_n) \|T x_n - T z\|$$

$$\leq \|z - x_{n+2}\| + (\mu_n - \lambda_n) \|x_{n+1} - T z\|$$
\[\| z - Tz \| \leq \| z - x \| + \| x - Tz \| + \lambda_n q \max \left\{ \| x - Tz \| \left[1 + \| x - Tz \| + \frac{1}{\lambda_n} \| x - x \| \right] \right\}, \]

\[\| x - Tz \| \left[1 + \| x - Tz \| + \frac{1}{\lambda_n} \| x - x \| \right] \]

\[+ \lambda_n q \max \left\{ \| x - Tz \| \left[1 + \| x - Tz \| + \frac{1}{\lambda_n} \| x - x \| \right] \right\}, \]

\[l + \| x - z \| \]

\[+ (1-\mu_n) \| Tz - Tz \| \]

We observe that

\[\| x - Tz \| = \frac{1}{\lambda_n} \| x - x \| + \frac{1-\mu_n}{\lambda_n} \| Tz - x \| \]

and

\[\| z - Tz \| \leq \| z - x \| + \| x - Tz \| \]

\[= \| z - x \| + \frac{1}{\lambda_n} \| x - x \| \]

\[+ \frac{1-\mu_n}{\lambda_n} \| Tz - x \| . \]

Therefore the above inequality reduces to

\[\| z - Tz \| \leq \| z - x \| + (\mu_n - \lambda_n) \| x - Tz \| + \lambda_n q \max \left\{ \| x - Tz \|, \right\}, \]

\[\| z - Tz \| \left[1 + \| x - Tz \| + \frac{1-\mu_n}{\lambda_n} \| Tz - x \| \right] \]

\[l + \| x - z \| \]
Letting \(n \to \infty \) and using (iii) and (iv), we obtain
\[
\|z - Tz\| \leq (1-h)\|z - Tz\| + hq \max\left\{ 0, \|z - Tz\|, \frac{1}{2} \|z - Tz\| \right\}
\leq (1-h+hq)\|z - Tz\|
\]
a contradiction. Hence \(z = Tz \).
i.e. \(z \) is a fixed point of \(T \).

REMARK 1. Taking \(\{ \mu_n \} = \{ 1 \} \) theorem 1 reduces to theorem 1 of Yuel and Sharma [66].

Now we present an example to prove the validity of our theorem 1.

EXAMPLE 1. Let \(N = R^4 \), where \(R^4 \) is the set of all 4-tuples \(x = (x_1, x_2, x_3, x_4) \) of real numbers and the norm \(\|x\| \) is defined by
\[
\|x\| = \left(\sum_{i=1}^{n} x_i^2 \right)^{1/2}, x \in R^4
\]
Further, let \(X = \{ x : \|x - 0\| \leq 1, 0, x \in R^4 \} \) and \(T \) be the mapping from \(X \) into itself such that for any arbitrary \(x = (x_1, x_2, x_3, x_4) \in X \)
\[
Tx = \left(\frac{x_1}{2}, \frac{x_2}{3}, \frac{x_3}{4}, \frac{x_4}{5} \right)
\]
Suppose \(\{x_n\} \) be the sequence of elements of \(X \) such that for \(n \geq 0 \)
\[
x_{n+2} = \left(\frac{\mu_n}{n} \right) x_{n+1} + \lambda_n T x_{n+1} + \left(1 - \frac{\mu_n}{n} \right) T x_n
\]
where
\[
\{ \mu_n \} = \begin{cases} \frac{2n+3}{2n+4} & , \ n > 0 \text{ and } \mu_0 = 1 \\ \{ \frac{n+1}{2n+1} \} , & , \ n \geq 0
\end{cases}
\]

Consider \(x_0 = (\frac{3}{4}, 0, 0, 0) \), \(x_1 = (\frac{1}{2}, 0, 0, 0) \) then it can be easily seen that \(x_2 = (\frac{1}{4}, 0, 0, 0) \), \(x_3 = (\frac{1}{6}, 0, 0, 0) \), \(x_4 = (\frac{107}{960}, 0, 0, 0) \) etc.

Now it is easy to see that all the conditions of theorem 1 are satisfied, for instance taking \(y = x_2 \), we obtain
\[
||T x - T y|| = \frac{1}{8} = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{2} ||x-y||
\]
Setting \(\frac{1}{2} < q < 1 \), condition (6.1.1) is satisfied. Clearly \(x = (0, 0, 0, 0) \) i.e. \(0 \) is the unique fixed point of \(T \).

REMARK 2. If the set \(X \) is not closed or convex then mapping \(T \) may not have fixed point in \(X \).

The following example illustrates this fact.

EXAMPLE 2. Let \(N = \mathbb{R} \), the set of all real numbers regarded as a normed space. Let \(X = [-1, 0) \cup (0,1] \) and define mapping \(T \) of \(X \) into itself such that
\[
T x = \frac{-x}{3} \text{ for all } x \in X.
\]

Let \(\{x_n\} \) be the sequence of elements of \(X \) as defined in
example 1. Let \(x_0 = -1, x_1 = -\frac{1}{2} \) then \(x_2 = \frac{1}{6}, x_3 = \frac{1}{54} \) etc.

Now it is easy to see that all the conditions of theorem 1 are satisfied except that \(X \) is neither closed nor convex.

Clearly \(T \) has no fixed point in \(X \).

We extend the result of theorem 1 for a pair of mappings in the form of following:

Theorem 2. Let \(X \) be a closed, convex subset of a normed linear space \(N \) and let \(T_1, T_2 \) be two self mappings on \(X \) satisfying

\[
\|T_1x - T_2y\| \leq q \max \left\{ \|x - y\|, \frac{\|y - T_2y\| \left[1 + \|x - T_1x\| \right]}{1 + \|x - y\|}, \|x - T_2y\| \left[1 + \|x - T_1x\| + \|y - T_1x\| \right] \right\}
\]

for all \(x, y \in X \), where \(0 < q < 1 \)

and \(\{x_n\} \) be the sequence of \(G \)-iterates associated with \(T_1 \) and \(T_2 \) defined as follows:

Let \(x_0, x_1 \in X \) and for \(n \geq 0 \)

\[
x_{2n+2} = (\mu - \lambda) x_{2n+1} + \lambda \frac{T_1 x_{2n+1} + (1 - \mu) T_2 x_{2n+1}}{n} + (1 - \mu) T_2 x_{2n+1}
\]

\[
x_{2n+3} = (\mu - \lambda) x_{2n+2} + \lambda \frac{T_1 x_{2n+2} + (1 - \mu) T_2 x_{2n+2}}{n} + (1 - \mu) T_2 x_{2n+1}
\]

where \(\{\mu\} \) and \(\{\lambda\} \) satisfy (i), (ii), (iii) and (iv).

If \(\{x_n\} \) converges in \(X \), then it converges to the common fixed point of \(T_1 \) and \(T_2 \).
PROOF. Let \(z \in X \) such that \(\lim_{n \to \infty} x_n = z \). We shall show that \(z \) is the common fixed point of \(T_1 \) and \(T_2 \). Now consider

\[
\|z - T_1 z\| = \|z - x\|_{2n+3} + \|x - T_1 z\|_{2n+3}
\]

\[
\leq \|z - x\|_{2n+3} + \|\frac{\lambda - \mu}{n} x\|_{2n+2} + \frac{\lambda}{n} \|x - T_1 z\|_{2n+2}
\]

\[
+ (1 - \frac{\lambda}{n}) \|T_x - T_1 z\|_{2n+3}
\]

\[
\leq \|z - x\|_{2n+3} + \|\frac{\lambda - \mu}{n} x\|_{2n+2} + \frac{\lambda}{n} \|x - T_1 z\|_{2n+2}
\]

\[
+ (1 - \frac{\lambda}{n}) \|T_x - T_1 z\|_{2n+3}
\]

\[
\leq \|z - x\|_{2n+3} + \|\frac{\lambda - \mu}{n} x\|_{2n+2}
\]

\[
\leq \max_{n} \{ \|z - x\|_{2n+2}, \frac{\|x - T_1 z\|_{2n+2}}{2} \}
\]

\[
\frac{1}{2} \left(\frac{\|z - T_2 x\|_{2n+2}}{2} + \frac{\|x - T_1 z\|_{2n+2}}{2} \right)
\]

\[
+(1 - \frac{\lambda}{n}) \|T_x - T_1 z\|_{2n+3}
\]

We observe that

\[
\|x - T_2 x\|_{2n+2} = \frac{1}{\lambda_n} \|x - x\|_{2n+2} + \frac{1 - \mu}{\lambda_n} \|T_x - T_1 z\|_{2n+2}
\]

and
Using these conclusions in the above inequality, we obtain

\[
\|z - T_1 z\| \leq \|z - x\| + (\mu - \lambda_n) \|x - T_1 z\| + \lambda q \max\left\{\|z - x\|, \|T_1 z - x\| \right\} \left[1 + \|z - T_1 z\|\right]
\]

\[
\frac{1 - \mu}{\lambda_n} \|z - T_1 z\| + \frac{1 - \mu}{\lambda_n} \|T_1 x - x\| \leq \frac{1 - \mu}{\lambda_n} \|z - T_1 z\| + \frac{1 - \mu}{\lambda_n} \|T_1 x - x\| \leq \frac{1 - \mu}{\lambda_n} \|x - T_1 z\|
\]

\[
\left[\frac{1}{\lambda_n} \|z - x\| + \frac{1}{\lambda_n} \|T_1 x - x\| + \frac{1 - \mu}{\lambda_n} \|T_1 x - x\|\right] \left[1 + \|z - T_1 z\|\right]
\]

Taking limit as \(n \to \infty \) and using (iii), (iv) we have

\[
\|z - T_1 z\| \leq (1 - h) \|z - T_1 z\| + h q \max\{0, 0, 0\}
\]

\[
\Rightarrow \|z - T_1 z\| \leq (1 - h) \|z - T_1 z\|
\]

a contradiction. Therefore \(z = T_1 z \) i.e. \(z \) is a fixed point of \(T_1 \).
Similarly we can show that

$$||z-T_2z|| \leq (1-h)||z-T_2z||.$$

Hence z is a common fixed point of T_1 and T_2. Uniqueness follows from condition (6.2.1).

REMARK 3. When we put $\{\mu_n\} = \{1\}$ then theorem 2 reduces to theorem 2 of Yuel and Sharma [66].

Finally, we furnish an example to discuss the validity of theorem 2.

EXAMPLE 3. Let $N = 4$ and

$$X = \{x : ||x-0|| < 1, \ 0, x \in R^4\}$$

as defined in example 1. Suppose that T_1, T_2 be two self mappings on X defined by

$$T_1x = \left(\frac{x_1}{3}, \frac{x_2}{2}, \frac{x_3}{4}, \frac{x}{5} \right)$$

and

$$T_2x = (x_1, x_2, x_3, x_4)$$

for any $x = (x_1, x_2, x_3, x_4) \notin X$.

Let $\{x_n\}$ be the sequence of point of X such that for $n \geq 0$

$$x_{2n+2} = (\mu - \lambda)x_n + \lambda T_1x_n + (1-\mu)T_2x_n$$

and

$$x_{2n+3} = (\mu - \lambda)x_n + \lambda T_1x_n + (1-\mu)T_2x_n$$

where
\[
\{ \lambda_n \} = \left\{ \frac{n+1}{2n+1} \right\}, \quad n \geq 0
\]

\[
\mu_0 = 1 \quad \text{and} \quad \left\{ \mu_n \right\} = \left\{ \frac{2n+3}{2n+4} \right\}, \quad n > 0.
\]

Let \(x_0 = \left(\frac{3}{4}, 0, 0, 0 \right), \quad x_1 = \left(\frac{1}{2}, 0, 0, 0 \right) \) \(\in X \)

then it is easy to see that

\[
x_2 = \left(\frac{1}{6}, 0, 0, 0 \right), \quad x_3 = \left(\frac{1}{6}, 0, 0, 0 \right), \quad x_4 = \left(\frac{5}{54}, 0, 0, 0 \right), \text{etc.}
\]

Now, it is easy to see that all the conditions of theorem 2 are satisfied and clearly \(x = (0, 0, 0, 0) \) i.e. \(0 \) is the unique common fixed point of \(T_1 \) and \(T_2 \).