CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Biomass as a Source of energy</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Environmental Impact</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 Properties of Biomass</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4 Conversion of Biomass</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Literature Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 General</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.2 Current Status</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Alten, Italy</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Egemin, Belgium</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Ensyn, Canada</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2.2.4 Dynamotive Technologies Corporation, Canada</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.2.5 BBC, Canada</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2.2.6 Bio-Alternative, Swizerland</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>2.2.7 GTI, USA</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.2.8 CRES, Greece</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2.2.9 BFH (Institute for Wood Chemistry), Germany</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.2.10 University of Aston, UK</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.2.11 University of Waterloo, Canada</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>Problem Identification</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Experimental Investigation of Pyrolysis of Rice Husk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.1 Experimental Test Rig</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>4.2 Modified Reactor</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>4.3 Test Methodology & Observations</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Analysis of Experimental Results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.1 Liquid Product Properties</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>5.2 Yield of Oil</td>
<td>106</td>
</tr>
<tr>
<td>6</td>
<td>Mathematical Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1 Introduction</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>6.2 Multi Regression Techniques</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>6.3 Multi Regression Models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3.1 Model - 1 (All Parameters)</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>6.3.2 Model - 2 (At Temperature 400°C)</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>6.3.3 Model - 3 (At Temperature 450°C)</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>6.3.4 Model - 4 (At Temperature 500°C)</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>6.3.5 Model - 5 (At Temperature 550°C)</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>6.3.6 Model - 6 (At Temperature 600°C)</td>
<td>138</td>
</tr>
</tbody>
</table>
CONTENTS

7 Feasibility of Substitution of Fossil Fuel Oil by Bio-oil
 7.1 Rice Husk Availability 149
 7.2 Technical Feasibility 150
 7.3 Economic Feasibility 151

8 Conclusion & Scope of Further Work
 8.1 Conclusion 155
 8.2 Scope of further work 156

References

Annexure