LIST OF FIGURES

Fig. 1.1 : Formation of phenol to PCP during its chlorination.

Fig. 2.1 : The *meta* cleavage pathway for oxidation of phenol.

Fig. 2.2 : PCP degradation family pathway.

Fig. 3.1 : Geographical map of Lalkuan, Nainital showing location of M/s Centuary Pulp and Paper Mill and sampling site.

Fig. 3.2 (a-f) : Showing pulp paper mill effluent collection from M/s Centuary Pulp and Paper Mill, Lalkuan, Nainital. (a) view of effluent in drain discharged after treatment from industry (b) uses of pulp paper mill effluent by public for general purpose (c) discharge of effluent after treatment, (d) showing apparent colour demarcation after mixing of effluent to river water and (e-f) effluent in drain after discharge from industry to aquatic environment.

Fig. 3.3 : Flow chart of CPs extraction from pulp paper mill effluent.

Fig. 3.4 (a-d) : HPLC Chromatogram of (a) 2,4-dichlorophenol, (b) 2,4,5-trichlorophenol, (c) PCP and (d) separation of CPs from pulp paper mill effluent.

Fig. 4.1 : Serial dilution of sample and purification of bacterial strains.

Fig. 4.2 (a-b) : (a) Isolated and purified phenol tolerant bacterial strains (ITRC BK-1-7) in MSM plate and (b) screening of phenol tolerant bacterial strains (ITRC BK-1-7) in phenol (500 mg/l) amended MSM plate along with 1% glucose (w/v).

Fig. 4.3 (a-b) : Showing the morphology at (100 x) of phenol tolerant bacterial strains: (a) *Paenibacillus thiaminolyticus*, ITRC BK-4 and (b) *Bacillus cereus*, ITRC BK-7.

Fig. 4.4 (a-d) : Screening of PCP tolerant bacterial strains (b) ITRC S6, (c) ITRC S7 and (d) ITRC S8 in PCP (300 mg/l) amended MSD in presence of BCP along with 1% glucose (w/v) as compared to (a) control.

Fig. 4.5 (a-c) : Showing the morphology (100 x) of PCP tolerant bacterial strains: (a) *Bacillus cereus*, ITRC S6; (b) *Serratia marcescens*, ITRC S7; (c) *Serratia marcescens*, ITRC S8.

Fig. 4.6 : Showing result of 1% agarose gel electrophoresis of the PCR amplified fragment of 16S rRNA gene from ITRC S6, ITRC S7 and ITRC S8 bacterial strains.
Fig. 4.7 (a) : Phylogenetic neighbour-joining tree based on 16S rDNA sequences showing type strains of Bacillus species related to strain ITRC S₆. *Clostridium acetobutylicum* ATCC 824¹ (U16166) was used as the outgroup. Numbers at nodes indicate levels of bootstrap support ≥ 50% based on a neighbour-joining analysis of 1,000 resampled datasets. GenBank accession numbers are given in parentheses. Bar, 10 nucleotide substitutions per 100 nucleotides.

Fig. 4.7 (b) : Phylogenetic neighbour-joining tree based on 16S rDNA sequences showing type strains of *Serratia* species related to strain ITRC S₇. *Escherichia coli* ATCC 11775¹ (X80725) was used as the outgroup. Numbers at nodes indicate levels of bootstrap support ≥ 50% based on a neighbour-joining analysis of 1,000 resampled datasets. GenBank accession numbers are given in parentheses. Bar, 10 nucleotide substitutions per 100 nucleotides.

Fig. 4.7 (c) : Phylogenetic neighbour-joining tree based on 16S rDNA sequences showing type strains of *Serratia* species related to strain ITRC S₉. *Aeromonas hydrophila* ATCC 7966¹ (X60404) was used as the outgroup. Numbers at nodes indicate levels of bootstrap support ≥ 50% based on a neighbour-joining analysis of 1,000 resampled datasets. GenBank accession numbers are given in parentheses. Bar, 5 nucleotide substitutions per 100 nucleotides.

Fig. 5.1 (a-c) : Colony forming unit of PCP degrading bacterial strains of (a) ITRC S₆, (b) ITRC S₇ and (c) ITRC S₉.

Fig. 5.2 (a-c) : (a) Growth curve, (b) residual PCP and (c) chloride ion release during PCP degradation by axenic and mixed culture in MSM at (temperature-30±1°C, pH-7.0±0.1 and aeration rate-120 rpm) at 168 h incubation period.

Fig. 5.2 (d) : PCP degradation by PCP degrading bacterial strains (axenic and mixed culture) in 300 mg/l of PCP amended MSM containing 1% glucose (w/v) at 168 h incubation period at optimized condition.

Fig. 5.3 (a-e) : Comparative HPLC chromatogram of PCP degradation by (a) ITRC S₆, (b) ITRC S₇, (c) ITRC S₉, (d) mixed culture and (e) axenic and mixed culture compared with control at 168 h incubation period.

Fig. 5.4 (a-e) : GC-MS chromatograms of residual PCP and its metabolites after extraction with DCM (a) control, (b) ITRC S₆, (c) ITRC S₇, (d) ITRC S₉ and (e) mixed culture at 168 h incubation period.

Fig. 5.5 : Proposed PCP degradation pathway of *Bacillus cereus*
(DQ002384), ITRC S6; Serratia marcescens (AY927692), ITRC S7; Serratia marcescens (DQ002385), ITRC S6.

Fig. 5.6 (a-e): Effect of temperature, pH and aeration rate (a) 20°C (b) 37°C (c) pH 6 (d) pH 9 (e) 50 rpm and (f) 200 rpm on PCP degradation by PCP degrading bacterial strains (axenic and mixed culture) in 300 mg/l of PCP amended MSM containing 1% glucose (w/v) at 168 h incubation period as compared to control.

Fig. 5.7 (a-c): (a) Growth curve, (b) residual PCP and (c) chloride ion release during PCP degradation by axenic and mixed culture in MSM at temperature 30±1°C, pH 7.0±0.1 and aeration rate 120 rpm at 168 h incubation period.

Fig. 6.1 (a-b): Phenol degradation by phenol degrading bacterial strains ITRC BK-4, ITRC BK-7 and mixed culture in phenol (500 mg/l) amended MSM containing 1% glucose (w/v) at (a) 96 h and (b) 168 h incubation period.

Fig. 6.2 (a-e): (a) Growth curve, (b) biomass, (c) residual phenol, (d) variation in pH and (e) variation in D.O. of ITRC BK-4, ITRC BK-7 and mixed culture in MSM during phenol degradation by phenol degrading axenic and mixed culture at pH 7.5±0.2, temperature 37±1°C and 120 rpm up to 168 incubation period.

Fig. 6.2 (f): Comparison of scanning after phenol degradation range between (300-700 nm) of ITRC BK-4 compared with control.

Fig. 6.2 (g): Comparison of scanning after phenol degradation range between (300-700 nm) of ITRC BK-7 compared with control.

Fig. 6.2 (h): Comparison of scanning after phenol degradation range between (300-700 nm) of mixed culture compared with control.

Fig. 6.3 (a-d): Comparative HPLC chromatogram of phenol degrading bacterial strains (a) ITRC BK-4, (b) ITRC BK-7, (c) mixed culture and (d) axenic and mixed culture compared with control at 168 h incubation period.

Fig. 6.4 (a-d): GC-MS chromatograms of residual phenol and its metabolites after extraction in acidic extract (a) control, (b) ITRC BK-4, (c) ITRC BK-7 and (d) mixed culture at 168 h incubation period.

Fig. 6.5: Proposed phenol degradation pathway of Paenibacillus thiaminolyticus, ITRC BK-4 and Bacillus cereus, ITRC BK-7.

Fig. 7.1 (a-f): Growth curve and chloride ion release of (a) ITRC S6, (b) ITRC S7, (c) ITRC S6, (d) mixed culture, (e) changes in pH and (f) D.O. during pulp paper mill effluent
decolorization/degredation.

Fig. 7.2 (a-d): HPLC Chromatogram of PCP degradation in pulp paper mill effluent by (a) ITRC S₆, (b) ITRC S₇, (c) ITRC S₉ and (d) mixed culture as compared to control at 168 h incubation period.

Fig. 7.3 (a-e): GC-MS chromatograms of (a) control, (b) ITRC S₆, (c) ITRC S₇, (d) ITRC S₉ and (e) mixed culture after 168 h incubation period.

Fig. 7.4 (a-c): (a) Bacterial treated and untreated pulp paper mill effluent at 168 h incubation period, (b) control (tap water) and (c) seed germination test of Phaseolus aureus with bacterial treated and untreated pulp paper mill effluent at 2"nd" day.

Fig. 7.5 (a-h): Effect of bacterial treated pulp paper mill effluent on morphology of Tubifex tubifex: (a) control (tap water), (b) 5%, (c) 25%, (d) 45%, (e-f) 65% and (g-h) 100% effluent after 96 h bioassay.

Fig. 7.6: Effect of bacterial treated and untreated pulp paper mill effluent on reduction of percent mortality of Tubifex tubifex after 96 h exposure.