LIST OF TABLES

Table 3.1 : Physico-chemical analysis of M/s Centuary Pulp and Paper Mill effluent.

Table 3.2 : Retention time of various CPs.

Table 4.1 : Screening for tolerance pattern of phenol bacterial isolates with and without glucose.

Table 4.2 (a) : Morphological characteristics of bacterial colony of ITRC BK-4 and ITRC BK-7.

Table 4.2 (b) : Biochemical characterization of bacterial strains (ITRC BK-4 and ITRC BK-7).

Table 4.3 : Screening for tolerance pattern of PCP bacterial isolates in presence of BCP with and without glucose.

Table 4.4 (a) : Morphological characteristics of bacterial colony of ITRC S6, ITRC S7, and ITRC S9.

Table 4.4 (b) : Biochemical characterization of bacterial strains (ITRC S6, ITRC S7, and ITRC S9).

Table 4.4 (c) : Antimicrobial sensitivity test of PCP tolerant bacterial isolates (ITRC S6, ITRC S7 and ITRC S9).

Table 5.1 : Conditions for GC-MS analysis for PCP and its metabolites.

Table 5.2 : The RT (in min) of PCP and its metabolites identified in axenic (by ITRC S6, ITRC S7, ITRC S9) and mixed culture as compared to control sample at 168 h incubation period during PCP degradation at optimized condition (30±1°C, pH 7.0±0.2 and 120 rpm).

Table 5.3 (a) : PCP degradation by ITRC S6 in 1% glucose containing MSM in the presence of (300 mg/l) of PCP at different temperature, pH and aeration rate effect on PCP degradation.

Table 5.3 (b) : PCP degradation by ITRC S7 in 1% glucose containing MSM in the presence of (300 mg/l) of PCP at different temperature, pH and aeration rate effect on PCP degradation.

Table 5.3 (c) : PCP degradation by ITRC S9 in 1% glucose containing MSM in the presence of (300 mg/l) of PCP at different temperature, pH and aeration rate effect on PCP degradation.

Table 5.3 (d) : PCP degradation by mixed culture in 1% glucose containing
MSM in the presence of (300 mg/l) of PCP at different temperature, pH and aeration rate effect on PCP degradation.

Table 6.1 Conditions for GC-MS analysis for phenol and its metabolites.

Table 6.2 The RT (in min) of phenol and its metabolites identified during phenol degradation by ITRC BK-4, ITRC BK-7 and mixed culture as compared to control sample at 168 h incubation period at 37±1°C, pH 7.5±0.2 and 120 rpm.

Table 6.2 (a) Phenol degradation (%) of ITRC BK-4 in 1% glucose containing MSM, in the presence of (500 mg/l) of phenol at optimized condition (Temperature 37±1°C, pH 7.5±0.2, 120 rpm) and temperature, pH, aeration rate effect on phenol degradation.

Table 6.2 (b) Phenol degradation (%) of ITRC BK-7 in 1% glucose containing MSM, in the presence of (500 mg/l) of phenol at optimized condition (Temperature 37±1°C, pH 7.5±0.2, 120 rpm) and temperature, pH, aeration rate effect on phenol degradation.

Table 6.2 (c) Phenol degradation (%) of mixed culture in 1% glucose containing MSM, in the presence of (500 mg/l) of phenol at optimized condition (Temperature 37±1°C, pH 7.5±0.2, 120 rpm) and temperature, pH, aeration rate effect on phenol degradation.

Table 7.1 Test conditions for seed germination test.

Table 7.2 Test conditions for conducting short-term toxicity test using *Tubifex tubifex*.

Table 7.3 Main characteristics of the wastewater from M/s Centuary Pulp and Paper Mill.

Table 7.4 Different characteristics of pulp paper mill effluent during its decolorization/degradation by ITRC S8, ITRC S7, ITRC S5 and mixed culture at 0 and 168 h incubation period.

Table 7.5 The RT (in min) of PCP and its metabolites in pulp paper mill effluent degradation by axenic and mixed culture at 30±1°C, pH 8.0±0.25 and 120 rpm along with 1% glucose and 0.5% peptone.

Table 7.6 Seed germination test of bacterial untreated and treated pulp paper mill effluent with *Phaseolus aureus*.

Table 7.7 Percent mortality of *Tubifex tubifex* in different concentration of pulp paper mill effluent (untreated and bacterial treated) after 96 h bioassay.
Table 7.8: LC₅₀ and their 95% confidence limits of bacterial treated pulp paper effluent with Tubifex tubifex.