CONTENTS

ACKNOWLEDGEMENT (i)
PREFACE (ii)
CONTENTS (iv)

CHAPTER - I BASIC FEATURES OF RARE-EARTH AND TRANSITION ELEMENTS 1-23
1.1 Introduction 1
1.2 Basic features of rare-earth elements 4
1.3 Rare-earth compounds 10
1.4 Basic features of transition elements 16
1.5 Basic features of platinum group elements 17
1.5.1 Uses and Importance 20

CHAPTER - II BASIC THEORIES OF MAGNETISM, DIELECTRIC AND ELECTRICAL TRANSPORT IN SOLIDS 24-82
2.1 Introduction 24
2.2 Magnetic properties of solids 24
2.3 Paramagnetism of non-interacting magnetic ions 26
2.4 Effect of dipolar interaction and crystal field 29
2.5 Molecular field models for ordered magnetic materials 30
2.5.1 Weiss theory of ferromagnetism 32
2.5.2 Neel’s theory of antiferromagnetism 35
2.5.3 Neels’ theory of ferrimagnetism 37
2.5.4 Other types of ordering in ferrimagnetic material 43
2.6 Different types of exchange interactions 43
4.4 Structure of the studied materials 126
4.5 Thermal studies of the prepared materials 124
4.6 Preparation of pellets with uniform density 133
4.7 Cleaning polishing and electrode making 135
4.8 Conclusions 136

CHAPTER - V ELECTRICAL CONDUCTIVITY OF TUNGSTATE COMPOUNDS AT HIGH TEMPERATURE 137-159
5.1 Introduction 137
5.2 Material preparation and experimental procedure 138
5.3 Study of pellet density and electrical conductivity as a function of pelletizing pressure 139
5.4 Study of current density as a function of applied electric field 142
5.5 Study of electrical conductivity as a function of frequency and time 145
5.6 Study of ac electrical conductivity as a function of temperature 148
5.7 Discussion 157
5.8 Conclusion 159

CHAPTER - VI DIELECTRIC PROPERTIES OF TUNGSTATE COMPOUNDS 160-174
6.1 Introduction 160
6.2 Material preparation and experimental technique 161
6.3 Dielectric constant and loss studies 161
6.4 Conclusion 173

CHAPTER - VII MAGNETIC SUSCEPTIBILITY OF TUNGSTATE COMPOUNDS AT HIGH