CONTENTS

1. **INTRODUCTION** 01
 - 1.1 Pharmacognostical studies 18
 - 1.2 Phytochemical investigations 19
 - 1.3 Molecular studies 21
 - 1.4 *In vitro* Pharmacological studies 23

2. **REVIEW OF LITERATURE** 25
 - 2.1 Pharmacognostical studies 26
 - 2.2 Phytochemical studies 30
 - 2.3 Molecular studies 41
 - 2.3.1 DNA Barcoding 41
 - 2.3.2 RAPD Analysis 45
 - 2.4 Pharmacological studies 48
 - 2.4.1 *In vitro* Cytotoxic Potential 58

3. **MATERIALS AND METHODS** 64
 - 3.1 Collection of Materials 64
 - 3.2 Pharmacognostical studies 64
 - 3.2.1 Plant Materials for Micro-morphological studies 64
 - 3.2.2 Epidermal studies 64
 - 3.2.3 Fixatives for Anatomical studies 65
 - 3.2.4 Stains and Reagents for Anatomical studies 65
 - 3.2.5 Stains/Chemicals for Histochemical studies 65
 - 3.2.6 Histochemical studies 66
 - 3.2.7 Materials for SEM studies 67
 - 3.3 Phytochemical studies 67
 - 3.3.1 Successive solvent extraction 67
 - 3.3.2 Preparation of Petroleum ether extract 68
 - 3.3.3 Preparation of Chloroform extract 68
 - 3.3.4 Preparation of Methanol extract 69
3.3.5 Preparation of crude methanol extract 69
3.3.6 Thin Layer Chromatography 69
3.3.7 Determination of Total Phenolics and Flavonoids 70
 3.3.7.1 Extraction 70
 3.3.7.2 Total Phenolic assay 70
 3.3.7.3 Total Flavonoid assay 71
3.3.8 Determination of Total Alkaloids 71
 3.3.8.1 Extraction 71
 3.3.8.2 Preparation of the solutions 72
 3.3.8.3 Preparation of standard curve 72
3.4 Molecular studies 73
 3.4.1 Plant material 73
 3.4.2 DNA Barcoding 73
 3.4.2.1 Genomic DNA extraction 73
 3.4.2.2 Quality and Quantity analysis of DNA 75
 3.4.2.3 Polymerase Chain Reaction 76
 3.4.2.4 Details of primers used for PCR 77
 3.4.2.5 Analysis of DNA amplification by AGE 78
 3.4.2.5.1 Standard DNA markers 78
 3.4.2.5.2 PCR-Product electrophoresis 78
 3.4.2.6 Purification and DNA sequencing 78
 3.4.2.7 Sequencing of purified rbcL gene segment 79
 3.4.2.8 rbcL sequence analysis 79
 3.4.3 Random Amplified Polymorphic DNA 79
 3.4.3.1 Agarose gel electrophoresis 81
 3.4.3.2 Visualization of PCR products 82
 3.4.3.3 Data analysis 82
 3.4.3.4 Buffers and stock preparation for RAPD 83
3.5 Anti-acetylcholinesterase activity 84
 3.5.1 Preparation of plant extract 84
3.5.2 Chemicals 84
3.5.3 Reagents 84
3.5.4 Anti-acetylcholinesterase activity 86

3.6 *In vitro* cytotoxicity studies 86
3.6.1 Preparation of the plant extract 86
3.6.2 Cytotoxicity assay 87
3.6.3 Material required 88
3.6.4 Procedure 88

4. RESULTS 89
4.1 Morphological description 89
 4.1.1 *Justicia adhatoda* L. 89
 4.1.2 *Justicia beddomei* (Clarke) Bennet 90
 4.1.3 *Justicia betonica* L. 91
 4.1.4 *Justicia gendarussa* Burm F. 92
 4.1.5 *Justicia santapau* Bennet 93
 4.1.6 *Justicia wynaadensis* (Nees) Heyne Ex Anders 94
4.2 Pharmacognostical studies 95
 4.2.1 Microscopic investigations 96
 4.2.1.1 Anatomical studies 96
 4.2.1.2 Histochemical studies of the roots 100
 4.2.2 Scanning Electron Microscopic studies 101
4.3 Phytochemical studies 101
 4.3.1 Thin Layer Chromatographic studies 101
 4.3.2 Total Phenolics and Flavonoids 102
 4.3.3 Total Alkaloids 104
4.4 Molecular Studies 104
 4.4.1 DNA Barcoding 106
 4.4.2 RAPD Analysis 108
4.5 Pharmacological investigations
 4.5.1 Anti-AChE activity
 4.5.2 In vitro cytotoxicity studies

5. DISCUSSION
 5.1 Morphological characters
 5.2 Pharmacognostical studies
 5.2.1 Scanning Electron Microscopic studies
 5.3 Phytochemical studies
 5.3.1 Thin Layer Chromatography
 5.3.2 Total Phenolics and Flavonoids
 5.3.3 Total Alkaloids
 5.4 Molecular studies
 5.4.1 DNA Barcoding
 5.4.2 RAPD Analysis
 5.5 Pharmacological investigations
 5.5.1 Anti-AChE activity
 5.5.2 In vitro cytotoxicity studies

6. SUMMARY
 6.1 Pharmacognostical investigations
 6.2 Phytochemical screening
 6.3 Molecular studies
 6.4 In vitro Pharmacological investigations

7. REFERENCES

LIST OF PUBLICATIONS
LIST OF TABLES

Table 01: DNA concentration (ng/µl) of six species of Justicia.
Table 02: Preparation of Reaction mix for PCR.
Table 03: Reaction steps and procedure for PCR.
Table 04: List of RAPD primers and their sequences.
Table 05: The comparative histological account of the leaf of the selected Justicia spp.
Table 06: The comparative histological details of the root of the selected Justicia spp.
Table 07: The comparative microscopical details of the leaf using SEM of the selected Justicia spp.
Table 08: Total Phenolics and Flavonoids content in various plant parts of selected Justicia spp.
Table 09: Total Alkaloid Content of various plant parts of Justicia spp.
Table 10: Blast similarity of different species of Justicia.
Table 11: List of RAPD primers with corresponding bands scored along with their polymorphism percentages.
Table 12: Similarity coefficients of the six Justicia species based on RAPD markers.
Table 13: Anti-AChE activity of different plant parts of the selected Justicia spp.
Table 14: In vitro growth inhibitory activity of the methanolic extracts of different plant parts of Justicia spp.
LIST OF FIGURES

Figure 01: Total Phenolic Calibration curve (Gallic acid)
Figure 02: Total Flavonoid Calibration curve (Quercetin)
Figure 03: Total Alkaloid Calibration curve (Caffeine)
Figure 04: Graphical representation of the consensus \(rbcL \) sequence of \(J. \, adhatoda \) (531 bp)
Figure 05: Graphical representation of the consensus \(rbcL \) sequence of \(J. \, beddomei \) (530 bp)
Figure 06: Graphical representation of the consensus \(rbcL \) sequence of \(J. \, betonica \) (500 bp).
Figure 07: Graphical representation of the consensus \(rbcL \) sequence of \(J. \, gendarussa \) (528 bp)
Figure 08: Graphical representation of the consensus \(rbcL \) sequence of \(J. \, santapaula \) (540 bp)
Figure 09: Graphical representation of the consensus \(rbcL \) sequence of \(J. \, wynaadensis \) (523 bp)
Figure 10: Evolutionary relationships of 19 taxa (linearized)
Figure 11: UPGMA cluster analysis-based dendrogram showing genetic relatedness among the six Justicia species
Figure 12: \textit{In vitro} cytotoxicity of selected Justicia spp.
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 01</td>
<td>Selected species of Justicia for study</td>
</tr>
<tr>
<td>Plate 02</td>
<td>Leaf base and leaf apex of selected Justicia spp.</td>
</tr>
<tr>
<td>Plate 03</td>
<td>Midrib, Upper and Lower Epidermis of Justicia spp.</td>
</tr>
<tr>
<td>Plate 04</td>
<td>Lower Epidermis of Selected Justicia spp.</td>
</tr>
<tr>
<td>Plate 05</td>
<td>T.S of the Petiole of selected Justicia spp.</td>
</tr>
<tr>
<td>Plate 06</td>
<td>T.S of the Midrib of selected Justicia spp.</td>
</tr>
<tr>
<td>Plate 07</td>
<td>T.S of the Lamina of selected Justicia spp.</td>
</tr>
<tr>
<td>Plate 08</td>
<td>C.S of the Root of Selected Justicia spp.</td>
</tr>
<tr>
<td>Plate 09</td>
<td>Histochemical staining of roots of Justicia spp. for lignin</td>
</tr>
<tr>
<td>Plate 10</td>
<td>Histochemical staining of roots of Justicia spp. for starch</td>
</tr>
<tr>
<td>Plate 11</td>
<td>Histochemical staining of roots of Justicia spp. for tannin</td>
</tr>
<tr>
<td>Plate 12</td>
<td>SEM studies of the leaf of Justicia spp.</td>
</tr>
<tr>
<td>Plate 13</td>
<td>SEM studies of the leaf of Justicia spp.</td>
</tr>
<tr>
<td>Plate 14</td>
<td>TLC profile of Petroleum Ether extracts of Justicia spp.</td>
</tr>
<tr>
<td>Plate 15</td>
<td>TLC profile of Chloroform extracts of Justicia spp.</td>
</tr>
<tr>
<td>Plate 16</td>
<td>TLC profile of Methanol extracts of Justicia spp.</td>
</tr>
<tr>
<td>Plate 17</td>
<td>RAPD analysis of selected Justicia spp.</td>
</tr>
<tr>
<td>Plate 18</td>
<td>RAPD analysis of selected Justicia spp.</td>
</tr>
</tbody>
</table>