CONTENTS

S.N.	Chapters	Page No.
1. | **Introduction** | 1-2
1.1 | Mycorrhiza | 3
1.2 | Types of mycorrhiza | 3
1.2.1 | Ectotrophic mycorrhiza | 4-5
1.2.2 | Endotrophic mycorrhiza | 5-7
1.2.3 | Ectendotrophic mycorrhiza | 7
1.3 | Ectomycorrhizal fungi | 7-8
1.4 | Other associations | 8
1.5 | Mycorrhizosphere effects | 8-10
1.6 | Spread of mycorrhizal colonization | 10-11
1.7 | Ecological importance of mycorrhizae | 11-12
1.8 | Role of mycorrhizal fungi in biocontrol | 12-13
1.9 | Objectives | 13

2. | **Review of Literature** | 14
2.1 | Occurrence and distribution of ectomycorrhiza in tree species | 14-16
2.2 | Structure of ectomycorrhiza | 16-17
2.3 | Ectomycorrhizal fungi ecology and types | 17-18
2.4 | Synthesis of ectomycorrhiza | 19
2.5 | Nursery inoculation | 19-20
2.6 | Effect of soil sterilization on development of ECM | 21-22
2.7 | Development of ECM in trees | 22-23
2.8 | Role of ECM in tree growth | 23-24
2.9 | Litter decomposition and development of ECM | 24-25
2.10 | ECM in Heavy metal tolerance and bioremediation | 25-26

3. | **Materials and Methods** | 27
3.1 | Study sites | 27-31
3.2 | Host Plant | 31
3.3 | Collection and preservation of ECM | 31-32
3.4 | Calculation of % frequency, occurrence and abundance | 32
3.5 | Sterilization | 32
3.5.1 | Washing and disinfection | 33
3.5.2 | Solarization of soil | 33-34
3.6 | Isolation of fungi | 34-35
3.6.1 | Isolation of ECM fungi | 35-37
3.6.2 | Isolation of AM fungi | 38-39
3.6.3 | Isolation and of growth promoting and litter decomposer microbes | 39
3.7 | Identification of isolated microbes | 39
3.7.1 | Identification of ECM | 49-40
3.7.2 | Identification of AM | 40
3.7.3 | Identification of growth promoting microbes | 40
3.8 | Maintenance of cultures | 41
3.8.1 | Preparation of ECM inoculum | 41
3.8.2 | Preparation of AM inoculums | 41-44
3.8.3 | Preparation of inoculums of growth promoting microbes | 44
3.9 | Decomposition of sal litter | 44
3.10 Effect of different treatments including ECM on germination and growth of sal 45
3.11 Inoculation and Planting of seedlings 45-46
3.12 Measurement of Height, Collar Diameter, Leaf Area and Growth Index 46-47
3.13 Estimation of Dry Plant Biomass 47
3.14 Estimation of Phosphorous in Sal leaves 48-50
3.15 Statistical analysis 50
4.0 Results 51
4.1 Survey, collection and identification of mycorrhizal fungi and other growth promoting microbes 51-77
4.2 Estimation of percentage frequency, occurrence and abundance 78-80
4.3 New species and new fungal records 81-84
4.4 Isolation and culturing of ECM, growth promoting and litter decomposing microorganisms in laboratory 85-89
4.4.1 Screening of growth promoting fungi 90
4.5 Study of relationship between mycorrhizae and growth of sal seedling 91
4.5.1 Inoculation of natural sal forest soil during seed sowing 91-92
4.5.2 Study on effect of different treatments including ECM on germination and growth of sal 92-95
4.5.3 Study on effect of ectomycorrhizae on growth and establishment of sal seedlings 96-100
4.5.4 Study on role of mycorrhiza in Phosphorous uptake 100
4.6 Consortium of inoculums including mycorrhizal fungi and other growth promoting microbes 100-101
4.7 Economics of application of ECM and growth promoting microbes for establishing of sal seedlings 101
5.0 Discussion 102
5.1 Biodiversity of mycorrhizal fungi in sal forests of central India 102-106
5.2 Role of solarised soil, natural sal forest soil, litter and other growth promoting microbes in establishment sal seedlings 106-107
5.3 Isolation of mycorrhizae in artificial medium and their bulk production for commercial use 107-108
5.4 Role of mycorrhizae in growth and establishment of sal seedlings. 108-113
6.0 Conclusion 114
7.0 Summary 115-118
8.0 References 119-134
Appendix 135