Introduction to Cadmium Chalcogenide thin films

1.1 Introduction

1.1.1 General Approach of Cadmium Chalcogenide thin films

1.1.2 Cadmium Sulfide

1.1.3 Cadmium Selenide

1.1.4 Cadmium Telluride

1.2 Introduction to Thin Films

1.3 Deposition techniques

1.4 History of electroplating

1.5 Fundamental concepts of Electrodeposition technique

1.5.1 Basic components in Electrodeposition technique

1.5.2 Advantages of electrodeposition technique

1.5.3 Limitation of electrodeposition technique

1.6 Experimental setup

1.7 Characterization of thin Films

1.7.1 X-Ray Diffractograms

1.7.2 The Basic Phenomenon

1.7.3 Optical absorption

1.7.4 Surface wettability

1.7.5 Surface morphology

1.7.6 Fourier Transform Raman Spectroscope

1.7.7 FT-IR Spectroscopy

References
Chapter II

Preparation and Characterization of CdS thin films

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Essential requirements</td>
<td>22</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Substrate cleaning</td>
<td>22</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Solution preparation</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Experimental set up</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Results and discussion</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Reaction mechanism</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Cyclic Voltammetry</td>
<td>25</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Structural analysis</td>
<td>26</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Optical absorption for band gap energy</td>
<td>28</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Surface wettability</td>
<td>32</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Surface morphology</td>
<td>33</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Fourier Transform Raman (FT-Raman) Spectroscopy</td>
<td>35</td>
</tr>
<tr>
<td>2.3.8</td>
<td>FT-IR Spectroscopy</td>
<td>35</td>
</tr>
</tbody>
</table>

References: 37
Chapter III

Preparation and Characterization of CdSe thin films

3.1 Introduction 41

3.2 Essential requirements 42
 3.2.1 Substrate cleaning 42
 3.2.2 Solution preparation 43
 3.2.3 Experimental set up 43

3.3 Results and discussion 43
 3.3.1 Reaction mechanism 43
 3.3.2 Cyclic Voltammetry 44
 3.3.3 Structural analysis 45
 3.3.4 Optical absorption for band gap energy 47
 3.3.5 Surface wettability 50
 3.3.6 Surface morphology 52
 3.3.7 Fourier Transform Raman (FT-Raman) Spectroscopy 53
 3.3.8 FT-IR Spectroscopy 54

References 55
Chapter IV

Preparation and Characterization of CdTe thin films

4.1 Introduction 58

4.2 Essential requirements 59

4.2.1 Substrate cleaning 59
4.2.2 Solution preparation 59
4.2.3 Experimental set up 59

4.3 Results and discussion 60

4.3.1 Reaction mechanism 60
4.3.2 Cyclic Voltammetry 60
4.3.3 Structural analysis 61
4.3.4 Optical absorption for band gap energy 63
4.3.5 Surface wettability 66
4.3.6 Surface morphology 68
4.3.7 Fourier Transform Raman (FT-Raman) Spectroscopy 70
4.3.8 FT-IR Spectroscopy 70

References 72
Chapter V

Electrodeposited Cadmium chalcogenide thin films studied by Double exposure holographic Interferometry technique

5.1 Origin of Holography 74

5.2 Introduction to Holography 75

5.3 History of Holography 75
 5.3.1 Photography and holography 76
 5.3.2 Photography 77
 5.3.3 Holography 77

5.4 Role of Interference and Diffraction during the recording and reconstructions process 78
 5.4.1 Interference During Recording 78
 5.4.2 Diffraction During Reconstruction 79

5.5 Mathematical Approach 79
 5.5.1 Holographic Recording and Reconstruction 79
 5.5.2 Importance of object and reference Wave 81
 5.5.3 Recording 82
 5.5.4 Reconstruction 84

5.6 Basic Imaging Techniques in Holography 84
 5.6.1 In-Line Hologram (Gabor) 85
 5.6.2 Off-Axis Hologram (Leith–Upatnieks) 88

5.7 Essential requirements for recording of holograms 91
 5.7.1 Coherence 91
5.7.2 Spatial Coherence
5.7.3 Temporal Coherence
5.7.4 Coherence Length

5.8 Vibration Isolation

5.9 Holographic recording media
5.9.1 Recording materials
5.9.2 The developing process in holography

5.10 Holographic Interferometry
5.10.1 Real-Time Interferometry
5.10.2 Time Average Interferometry
5.10.3 Sandwich Method
5.10.4 Double-Exposure Interferometry

5.11 Application of Double Exposure holographic interferometry
5.11.1 Non destructive testing with Holographic interferometry
5.11.2 Other applications with limitation

5.12 Recording of hologram by double exposure holographic interferometry.

5.13 Surface deformation study of CdS thin films
5.13.1 Preparation

5.14 Results and Discussion
5.14.1 Surface deformation study of hologram for CdS thin films
5.14.2 Thickness measurement of CdS thin films
5.14.3 Stress of CdS thin film to the stainless steel substrate

5.15 Surface deformation study of CdSe thin films
5.15.1 Preparation
5.16 Results and Discussion
5.16.1 Surface deformation study of hologram for CdSe thin films
5.16.2 Thickness measurement of CdSe thin films
5.16.3 Stress of CdSe thin film to the stainless steel substrate
5.17 Surface deformation study of CdTe thin films
5.17.1 Preparation
5.18 Results and Discussion
5.18.1 Surface deformation study of hologram for CdSe thin films
5.18.2 Thickness measurement of CdTe thin films
5.18.3 Stress of CdTe thin film to the stainless steel substrate

References
Chapter VI

Preparation and Characterization of BaSrTiO$_3$

6.1 Introduction 128
 6.1.1 Historical Background 128

6.2 Crystal Structure 130

6.3 Application of BaSrTiO$_3$ 131

6.4 Essential requirements 134
 6.4.1 Sample Preparation 134
 6.4.2 Ceramic Method 134

6.5 Actual Method of Preparation 137
 6.5.1 Sources of possible errors in sample preparation 138

6.6 Results and discussion 138
 6.6.1 Structural analysis 139
 6.6.2 Surface morphology 140
 6.6.3 Dielectric measurements 141
 6.6.4 Fourier Transform Raman (FT-Raman) Spectroscopy 142
 6.6.5 FT-IR Spectroscopy 143

6.7 Surface deformation of BaSrTiO$_3$ Sample 144

References 150
Chapter VII

Effect of electron beam irradiation on Cadmium Chalcogenide thin films

7.1 Introduction 155

7.1.1 Irradiation 155

7.2 Literature survey with Experimental details 156

7.3 Results and discussion 158

7.3.1 Structural analysis 158

7.3.2 Surface morphology 165

7.3.3 Optical analysis 172

7.3.4 Surface wettability 179

7.3.5 Fourier Transform Raman (FT-Raman) Spectroscopy 184

7.3.6 FT-IR Spectroscopy 187

References 191

Chapter VIII

Summary and Conclusions 194