CHAPTER 4
ITERATIVE ALGORITHMS FOR SOLVING
GENERALIZED NONLINEAR MIXED
VARIATIONAL-LIKE INEQUALITIES
62 - 80
CHAPTER 4

ITERATIVE ALGORITHMS FOR SOLVING GENERALIZED NONLINEAR MIXED VARIATIONAL-LIKE INEQUALITIES

In this chapter, we suggest predictor-corrector iterative scheme for solving a class of generalized mixed variational-like inequalities by using the concept of (g,η)-partially relaxed strong monotonicity set-valued mappings. The convergence analysis of algorithm only requires that the underlying mappings are continuous and (g,η)-partially relaxed strongly monotone. Our result generalizes the corresponding results of (see [25], [29], [30], [53], [132], [134]).

In Section 4.1, we introduced the concept of (g,η)-partially relaxed strongly monotone and other basic definitions are given. Section 4.2 contains the algorithm and the convergence theorem.

4.1. (g,η)-partially relaxed strongly monotone mapping

Let H be a real Hilbert space with norm $\|\cdot\|$ and inner product $\langle \cdot, \cdot \rangle$. Let $C(H)$ be the families of all nonempty compact subsets of H. Let $T, A: H \to C(H)$ be two set-valued mappings; $N, \eta: H \times H \to H$ be single-valued mappings, $g: H \to H$ be a single-valued invertible ma-
ping and \(\varphi : H \rightarrow (-\infty, \infty) \) be a real function.

We consider the following generalized nonlinear mixed variational-like inequalities problem:

To find \(x \in H, u \in T(x), v \in A(x) \) such that

\[
\langle N(u, v), \eta(g(y), g(x)) \rangle + \varphi(g(y)) - \varphi(g(x)) \geq 0 \quad \text{for all } g(y) \in H. \quad (4.1.1)
\]

Special cases:

1) If \(g = I \), the identity mapping, then (4.1.1) reduces to the following generalized mixed variational-like inequality problem given by Ding [29]:

To find \(x \in H, u \in T(x) \) and \(v \in A(x) \) such that

\[
\langle N(u, v), \eta(y, x) \rangle + \varphi(y) - \varphi(x) \geq 0 \quad \text{for all } y \in H. \quad (4.1.2)
\]

2) If \(\eta(x, y) = g(x) - g(y) \) for all \(x, y \in H \) where \(g : H \rightarrow H \) be single-valued mapping, then (4.1.2) reduces to the generalized mixed variational inequality problem given by Ding [25]:

To find \(x \in H, u \in T(x) \) and \(v \in A(x) \) such that

\[
\langle N(u, v), g(y) - g(x) \rangle + \varphi(y) - \varphi(x) \geq 0 \quad \text{for all } y \in H. \quad (4.1.3)
\]

It can be readily seen that (4.1.1) includes a number of extensions and generalizations of variational and variational-like inequalities studied in [25], [29], [30], [79], [132], [134] and the references therein.

Now here we give some definitions:
Definition 4.1.1. Let $T, A : H \to C(H)$ be two set-valued mappings, $N, N : H \times H \to H$ be two single-valued mappings and $g : H \to H$ be a single-valued one-one onto mapping. Then

1) $N(.,.)$ is said to be partially relaxed (g, η)-strongly monotone in first argument with respect to T if there exists a constant $\alpha > 0$ such that

$$\langle N(u, .) - N(u_2, .), \eta(g(z), g(y)) \rangle \geq -\alpha \| g(x) - g(z) \|^2$$

for all $x, y, z \in H, u_1 \in T(x), u_2 \in T(y)$.

Similarly, we can define the partially relaxed (g, η)-strong monotonicity of $N(.,.)$ in second argument with respect to A.

2) $N(.,.)$ is said to be (g, η)-strongly monotone in first argument with respect to T if there exists a constant $\alpha > 0$ such that

$$\langle N(u, .) - N(u_2, .), \eta(g(x), g(y)) \rangle \geq \alpha \| g(x) - g(y) \|^2$$

for all $x, y \in H, u_1 \in T(x), u_2 \in T(y)$.

3) T is said to be D-continuous on H if $\{x_n\} \subset H$ and $x_n \to x^*$, then $T(x_n) \to T(x^*)$ under the Hausdorff metric D on $C(H)$.

Definition 4.1.2. Hausdorff metric: Let H be a real Hilbert space. Let $B(H)$ denotes the family of all nonempty closed bounded subset of H. Let $G : H \to CB(H), \varepsilon > 0$ be any real number, then for every $u_1, u_2 \in H$ and $v_1 \in G(u_1)$, there exist $v_2 \in G(u_2)$ such that

$$\|v_1 - v_2\| \leq D(G(u_1), G(u_2)) + \varepsilon \|u_1 - u_2\|,$$
here $D(.,.)$ is the Hausdorff metric defined on $CB(H)$ by

$$D(B,C) = \max_{v \in B} \{ \sup_{u \in C} d(v, B), \sup_{u \in C} d(u, C) \},$$

for $B, C \in CB(H)$ and $d(v, B) = \min_{u \in B} d(v, u)$.

We note that if $G:H \rightarrow C(H)$, where $C(H)$ denotes the family of all nonempty compact subsets of H, then it is true for $e = 0$.

1.2. Iterative algorithm and its convergence analysis

In this section, we suggest and analyze some new predictor-corrector iterative algorithm for solving (4.1.1) by using the auxiliary variational inequality technique.

For given $x \in H$, $u \in T(x)$ and $v \in A(x)$, we consider the following auxiliary variational inequality problem:

Find $\hat{x} \in H$ such that

$$\langle g(\hat{x}) - g(x), g(y) - g(\hat{x}) \rangle + \langle pN(u,v), \eta(g(y), g(\hat{x})) \rangle + \rho \varphi(g(y)) - \rho \varphi(g(\hat{x})) \geq 0 \quad \text{for all } g(y) \in H,$$

(4.2.1)

where $\rho > 0$ is a constant. Observe that if $g(\hat{x}) = g(x)$, $\hat{u} \in T(\hat{x})$ and $\hat{v} \in A(\hat{x})$, then $(\hat{x}, \hat{u}, \hat{v})$ is a solution of (4.1.1). Thus, one can suggest the following predictor-corrector algorithm for solving the (4.1.1).

Algorithm 4.2.1. For given $x_0 \in H$, $u_0 \in T(x_0)$ and $v_0 \in A(x_0)$, compute an approximate solution (x_n, u_n, v_n) of generalized nonlinear mixed var-
ational-like inequalities problem by the following iterative scheme:

\[
\langle g(y_n) - g(x_n), g(y) - g(y_n) \rangle + \langle \mu N(u_n, v_n), \eta(g(y), g(y_n)) \rangle \\
+ \mu \varphi(g(y)) - \mu \varphi(g(y_n)) \geq 0 \quad \text{for all } g(y) \in H, \quad (4.2.2)
\]

\[
\langle g(z_n) - g(y_n), g(y) - g(z_n) \rangle + \langle \beta N(c_n, d_n), \eta(g(y), g(z_n)) \rangle \\
+ \beta \varphi(g(y)) - \beta \varphi(g(z_n)) \geq 0 \quad \text{for all } g(y) \in H, \quad (4.2.3)
\]

\[
\langle g(x_{n+1}) - g(z_n), g(y) - g(x_{n+1}) \rangle + \langle \rho N(c_n, f_n), \eta(g(y), g(x_{n+1})) \rangle \\
+ \rho \varphi(g(y)) - \rho \varphi(g(x_{n+1})) \geq 0 \quad \text{for all } g(y) \in H, \quad (4.2.4)
\]

\[
\begin{align*}
&u_n \in T(x_n), \quad \|u_{n+1} - u_n\| \leq D(T(x_{n+1}), T(x_n)), \\
v_n \in A(x_n), \quad \|v_{n+1} - v_n\| \leq D(A(x_{n+1}), A(x_n)), \\
c_n \in T(y_n), \quad \|c_{n+1} - c_n\| \leq D(T(y_{n+1}), T(y_n)), \\
d_n \in A(y_n), \quad \|d_{n+1} - d_n\| \leq D(A(y_{n+1}), A(y_n)), \\
e_n \in T(z_n), \quad \|e_{n+1} - e_n\| \leq D(T(z_{n+1}), T(z_n)), \\
f_n \in A(z_n), \quad \|f_{n+1} - f_n\| \leq D(A(z_{n+1}), A(z_n)),
\end{align*}
\]

here \(\mu > 0, \beta > 0, \rho > 0 \) are constants, and \(D \) is the Hausdorff metric on \(C(H) \).

If \(g = I \), then Algorithm 4.2.1 reduces to the following Predictor-Corrector iterative algorithm for solving the generalized mixed variational-like inequality problem (4.1.2).

Algorithm 4.2.2. For given \(x_0 \in H, u_0 \in T(x_0) \) and \(v_0 \in A(x_0) \), compute the approximate solution \((x_n, u_n, v_n) \) by the following iterative scheme:
\[
\langle y_n - x_n, y - y_n \rangle + (\mu N(u_n, v_n), \eta(y, y_n))
\]
\[+ \mu \varphi(y) - \mu \varphi(y_n) \geq 0 \text{ for all } y \in H, \quad (4.2.6)\]
\[
\langle z_n - y_n, y - z_n \rangle + (\beta N(c_n, d_n), \eta(y, z_n))
\]
\[+ \beta \varphi(y) - \beta \varphi(z_n) \geq 0 \text{ for all } y \in H, \quad (4.2.7)\]
\[
\langle x_{n+1} - z_n, y - x_{n+1} \rangle + (\rho N(c_n, f_n), \eta(y, x_{n+1}))
\]
\[+ \rho \varphi(y) - \rho \varphi(x_{n+1}) \geq 0 \text{ for all } y \in H, \quad (4.2.8)\]

\[
\begin{cases}
 u_n \in T(x_n), & \| u_{n+1} - u_n \| \leq D(T(x_{n+1}), T(x_n)), \\
 v_n \in A(x_n), & \| v_{n+1} - v_n \| \leq D(A(x_{n+1}), A(x_n)), \\
 c_n \in T(y_n), & \| c_{n+1} - c_n \| \leq D(T(y_{n+1}), T(y_n)), \\
 d_n \in A(y_n), & \| d_{n+1} - d_n \| \leq D(A(y_{n+1}), A(y_n)), \\
 e_n \in T(z_n), & \| e_{n+1} - e_n \| \leq D(T(z_{n+1}), T(z_n)), \\
 f_n \in A(z_n), & \| f_{n+1} - f_n \| \leq D(A(z_{n+1}), A(z_n)), \\
\end{cases}, \quad n = 0, 1, 2, \ldots, (4.2.9)
\]

Here \(\mu > 0, \beta > 0, \rho > 0 \) are constants, and \(D \) is the Hausdorff metric in \(C(H) \).

If \(\eta(x, y) = g(x) - g(y) \) for all \(x, y \in H \), where \(g : H \rightarrow H \) be single-valued mapping, then Algorithm 4.2.2 reduces to the following predictor-corrector algorithm for solving the generalized mixed variational inequality problem (4.1.3).

Algorithm 4.2.3. For given \(x_0 \in H, u_0 \in T(x_0) \) and \(v_0 \in A(x_0) \), compute the approximate solution \((x_n, u_n, v_n) \) by the following iterative schemes
\begin{align}
\langle y_n - x_n, y - y_n \rangle &+ \langle \mu N(u_n, v_n), g(y) - g(y_n) \rangle \\
&+ \mu \eta(y) - \mu \eta(y_n) \geq 0 \text{ for all } y \in H, ~(4.2.10) \\
\langle z_n - y_n, y - z_n \rangle &+ \langle \beta N(c_n, d_n), g(y) - g(z_n) \rangle \\
&+ \beta \eta(y) - \beta \eta(z_n) \geq 0 \text{ for all } y \in H, ~(4.2.11) \\
\langle x_{n+1} - z_n, y - x_{n+1} \rangle &+ \langle \rho N(e_n, f_n), g(y) - g(x_{n+1}) \rangle \\
&+ \rho \eta(y) - \rho \eta(x_{n+1}) \geq 0 \text{ for all } y \in H, ~(4.2.12)
\end{align}

\begin{align*}
\begin{cases}
 u_n \in T(x_n), & \|u_{n+1} - u_n\| \leq D(T(x_{n+1}), T(x_n)), \\
v_n \in A(x_n), & \|v_{n+1} - v_n\| \leq D(A(x_{n+1}), A(x_n)), \\
c_n \in T(y_n), & \|c_{n+1} - c_n\| \leq D(T(y_{n+1}), T(y_n)), \\
d_n \in A(y_n), & \|d_{n+1} - d_n\| \leq D(A(y_{n+1}), A(y_n)), \\
e_n \in T(z_n), & \|e_{n+1} - e_n\| \leq D(T(z_{n+1}), T(z_n)), \\
f_n \in A(z_n), & \|f_{n+1} - f_n\| \leq D(A(z_{n+1}), A(z_n)),
\end{cases} \quad n = 0, 1, 2, \ldots, (4.2.13)
\end{align*}

\text{Here } \mu > 0, \beta > 0, \rho > 0 \text{ are constants.}

If } \eta(x, y) = x - y \text{ for all } x, y \in H, \text{ then Algorithm 4.2.2 reduces to the following predictor-corrector algorithm for solving the mixed variational inequality problem.}

\textbf{Algorithm 4.2.4.} \text{ For given } x_0 \in H, u_0 \in T(x_0) \text{ and } v_0 \in A(x_0), \text{ compute approximate solution } (x_n, u_n, v_n) \text{ of the generalized mixed variational inequality by the following iterative schemes:}

\begin{align}
\langle y_n - x_n, y - y_n \rangle &+ \langle \mu N(u_n, v_n), y - y_n \rangle
\end{align}
If \(\varphi \) is a proper convex and lower semicontinuous function on \(H \), then Algorithm 4.2.4 can be rewritten as follows.

Algorithm 4.2.5. For given \(x_0 \in H, u_0 \in T(x_0) \) and \(v_0 \in A(x_0) \), compute an approximate solution \((x_n, u_n, v_n) \), by the following iterative schemes:

\[
\begin{align*}
y_n &= J^{\mu \varphi}_{\mu \varphi}(x_n - \mu N[u_n, v_n]), \\
z_n &= J^{\beta \varphi}_{\beta \varphi}(y_n - \beta N[c_n, d_n]), \\
x_{n+1} &= J^{\rho \varphi}_{\rho \varphi}(z_n - \rho N[e_n, f_n]),
\end{align*}
\]

(4.2.18)
\[\begin{align*}
|u_n \in T(x_n), \quad & \|u_{n+1} - u_n\| \leq D(T(x_{n+1}), T(x_n)), \\
v_n \in A(x_n), \quad & \|v_{n+1} - v_n\| \leq D(A(x_{n+1}), A(x_n)), \\
c_n \in T(y_n), \quad & \|c_{n+1} - c_n\| \leq D(T(y_{n+1}), T(y_n)), \\
d_n \in A(y_n), \quad & \|d_{n+1} - d_n\| \leq D(A(y_{n+1}), A(y_n)), \\
e_n \in T(z_n), \quad & \|e_{n+1} - e_n\| \leq D(T(z_{n+1}), T(z_n)), \\
f_n \in A(z_n), \quad & \|f_{n+1} - f_n\| \leq D(A(z_{n+1}), A(z_n)),
\end{align*} \]

(4.2.19)

Here, \(J_\rho^{(m)} = (I + \rho \partial \varphi(\cdot))^{-1} \) is the resolvent operator associated with the associated differential \(\partial \varphi(\cdot) \), and \(\mu > 0, \beta > 0, \rho > 0 \) are constants.

Algorithm 4.2.5 is a three-step forward-backward splitting algorithm for solving the generalized mixed variational inequality problem.

Before presenting main result of this chapter, we prove the following:

Lemma 4.2.1. Let \((x, u, v)\) be an exact solution of (4.1.1) and \(\{x_n\}, \{u_n\}, \{v_n\}\) be the sequence of approximate solution of (4.1.1) generated by Algorithm 4.2.1. Suppose \(\eta(g(x), g(y)) = -\eta(g(y), g(x)) \) for all \(x, y \in H \). If \(N(\cdot, \cdot) \) is partially relaxed \((g, \eta)\)-strongly monotone in the first and second arguments with respect to \(T \) and \(A \) with constants \(\alpha > 0 \) and \(\gamma > 0 \), respectively. Then

\[\begin{align*}
\|x_{n+1} - g(x)\|^2 & \leq \|g(x_{n+1}) - g(x)\|^2 - (1 - 2\rho(\alpha + \gamma))\|g(x_{n+1}) - g(z_n)\|^2, \\
\|y_n - g(y)\|^2 & \leq \|g(y) - g(y_n)\|^2 - (1 - 2\rho(\alpha + \gamma))\|g(y_n) - g(y)\|^2,
\end{align*} \]

(4.2.20) (4.2.21)
\[(y_n) - g(x) \| ^2 \leq \| g(y_n) - g(x) \| ^2 - (1 - 2\mu(\alpha + \gamma)) \| g(y_n) - g(x) \| ^2. \]
(4.2.22)

Proof. Let \((x, u, v)\) be a solution of (4.1.1), then \(u \in T(x), v \in A(x)\) and

\[\begin{align*}
N(u, v), \eta(g(y), g(x)) + \mu \varphi(g(y)) - \mu \varphi(g(x)) \geq 0 & \text{ for all } g(y) \in H, \\
N(u, v), \eta(g(y), g(x)) + \beta \varphi(g(y)) - \beta \varphi(g(x)) \geq 0 & \text{ for all } g(y) \in H, \\
N(u, v), \eta(g(y), g(x)) + \rho \varphi(g(y)) - \rho \varphi(g(x)) \geq 0 & \text{ for all } g(y) \in H,
\end{align*} \]

(4.2.23) (4.2.24) (4.2.25)

where \(\mu > 0, \beta > 0\) and \(\rho > 0\) are constants. Taking \(y = x_n\) in (4.2.25), we get

\[\text{Id } y = x \text{ in (4.2.4), we get} \]

\[\langle \rho N(u, v), \eta(g(x_{n+1}), g(x)) \rangle + \rho \varphi(g(x_{n+1})) - \rho \varphi(g(x)) \geq 0, \]
(4.2.26)

\[\langle g(x_{n+1}) - g(z_n), g(x) - g(x_{n+1}) \rangle + \langle \rho N(e_n, f_n), \eta(g(x), g(x_{n+1})) \rangle + \rho \varphi(g(x)) - \rho \varphi(g(x_{n+1})) \geq 0. \]
(4.2.27)

that \(\eta(g(x), g(y)) = -\eta(g(y), g(x))\) for all \(x, y \in X\), adding (4.2.26) and (4.2.27), we get

\[\begin{align*}
\langle x_{n+1} - g(z_n), g(x) - g(x_{n+1}) \rangle \geq & \rho \langle N(e_n, f_n) - N(u, v), \eta(g(x_{n+1}), g(x)) \rangle \\
& + \rho \langle N(u, v) - N(u, v), \eta(g(x_{n+1}), g(x)) \rangle \\
& + \rho \langle N(u, v) - N(u, v), \eta(g(x_{n+1}), g(x)) \rangle \\
& \geq - \rho(\alpha + \gamma) \| g(x_{n+1}) - g(z_n) \| ^2, \]
(4.2.28)

where we have used the assumption that \(N(\cdot, \cdot)\) is partially relaxed \(\eta\)-strongly monotone in first and second arguments with respect to \(\alpha\) and \(\beta\) with constants \(\alpha > 0\) and \(\gamma > 0\), respectively. Since
follows from (4.2.28) that
\[
\langle g(x_{n+1}) - g(z_n), g(x) - g(x_{n+1}) \rangle = \frac{1}{2} \left[\| g(x) - g(z_n) \|^2 - \| g(x_{n+1}) - g(z_n) \|^2 - \| g(x_{n+1}) - g(x) \|^2 \right]
\]
\[
\geq - \rho (\alpha + \gamma) \| g(x_{n+1}) - g(z_n) \|^2.
\]
Therefore, we get that for \(\rho < 1/2 (\alpha + \gamma) \),
\[
\| x_{n+1} - g(x) \|^2 \leq \| g(z_n) - g(x) \|^2 - (1 - 2\rho (\alpha + \gamma)) \| g(x_{n+1}) - g(z_n) \|^2
\tag{4.2.29}
\]
Taking \(y = z_n \) in (4.2.24) and \(y = x \) in (4.2.3), we have
\[
\langle \beta N(u, v), \eta(g(z_n), g(x)) + \beta \phi(g(z_n)) - \beta \phi(g(x)) \rangle \geq 0, \tag{4.2.30}
\]
\[
\langle g(z_n) - g(y_n), g(x) - g(z_n) \rangle + \langle \beta N(c_n, d_n), \eta(g(x), g(z_n)) \rangle
\]
\[
+ \beta \phi(g(x)) - \beta \phi(g(z_n)) \geq 0. \tag{4.2.31}
\]
Taking \(\eta(g(x), g(y)) = -\eta(g(y), g(x)) \) for all \(x, y \in X \), adding (4.2.30)
\tag{4.2.31}, we get
\[
z_n - g(y_n), g(x) - g(z_n) \rangle \geq \beta \langle N(c_n, d_n) - N(u, v), \eta(g(z_n), g(x)) \rangle
\]
\[
\geq \beta \langle N(c_n, d_n) - N(u, d_n), \eta(g(z_n), g(x)) \rangle
\]
72
+ \beta \langle N(u,d_n) - N(u,v), \eta(g(z_n), g(x)) \rangle

\geq - \beta (\alpha + \gamma) \| g(z_n) - g(y_n) \|^2, \hspace{1cm} (4.2.32)

due to the assumption that \(N(.,.) \) is partially relaxed \((g,\eta)\)
monotone in the first and second arguments with constant \(\alpha > 0 \)
and \(\gamma > 0 \), respectively. Since

\[\| g(x) - g(y_n) \|^2 = \| g(x) - g(z_n) + g(z_n) - g(y_n) \|^2 \]

\[= \| g(z_n) - g(x) \|^2 + \| g(z_n) - g(y_n) \|^2 \]

\[+ 2 \langle g(z_n) - g(y_n), g(x) - g(z_n) \rangle \]

on (4.2.32), we have

\[\langle g(z_n) - g(y_n), g(x) - g(z_n) \rangle = \frac{1}{2} \left[\| g(y_n) - g(x) \|^2 - \| g(z_n) - g(y_n) \|^2 \right] \]

\[\geq - \beta (\alpha + \gamma) \| g(z_n) - g(y_n) \|^2. \]

Therefore, for \(\beta < 1/(\alpha + \gamma) \),

\[g(z_n) - g(x) \|^2 \leq \| g(y_n) - g(x) \|^2 - (1 - 2\beta (\alpha + \gamma)) \| g(z_n) - g(y_n) \|^2 \]

\[\leq \| g(y_n) - g(x) \|^2. \hspace{1cm} (4.2.33) \]

Using \(y = y_n \) in (4.2.23) and \(y = x \) in (4.2.2), we have

\[\langle \mu N(u,v), \eta(g(y_n), g(x)) \rangle + \mu \varphi(g(y_n)) - \mu \varphi(g(x)) \geq 0, \hspace{1cm} (4.2.34) \]

\[\langle g(y_n) - g(x_n), g(x) - g(y_n) \rangle + \mu N(u,v_n), \eta(g(x), g(y_n)) \]

\[+ \mu \varphi(g(x)) - \mu \varphi(g(y_n)) \geq 0. \hspace{1cm} (4.2.35) \]
\[g(4.2.34) \text{ and } (4.2.35), \text{ and using } \eta(g(x), g(y)) = -\eta(y, g(x)), \text{ we have} \]

\[\langle y_n - g(x_n), g(x) - g(y_n) \rangle \geq \mu \langle N(u, v_n) - N(u, v), \eta(g(y_n), g(x)) \rangle \]
\[\geq \mu \langle N(u, v_n) - N(u, v), \eta(g(y_n), g(x)) \rangle \]
\[+ \mu \langle N(u, v_n) - N(u, v), \eta(g(y_n), g(x)) \rangle \]
\[\geq -\mu (\alpha + \gamma) \| g(y_n) - g(x_n) \|^2, \quad (4.2.36) \]

where we have used the assumption that \(N(., .) \) is partially relaxed strongly monotone in the first and second arguments with \(\alpha \) to \(T \) and \(\gamma \) to \(A \) with constants \(\alpha > 0 \) and \(\gamma > 0 \), respectively. Since

\[\| g(x) - g(x_n) \|^2 = \| g(x) - g(y_n) + g(y_n) - g(x_n) \|^2 \]
\[= \| g(y_n) - g(x) \|^2 + \| g(y_n) - g(x_n) \|^2 + 2 \langle g(y_n) - g(x_n), g(x) - g(y_n) \rangle, \]

follows from (4.2.36) that

\[\langle g(y_n) - g(x_n), g(x) - g(y_n) \rangle = \frac{1}{2} \left[\| g(x_n) - g(x) \|^2 - \| g(y_n) - g(x_n) \|^2 \right] \]
\[\geq -\mu (\alpha + \gamma) \| g(y_n) - g(x_n) \|^2. \]

Therefore, we get that for \(\mu < 1/2 (\alpha + \gamma) \),

\[\| g(y_n) - g(x) \|^2 \leq \| g(x_n) - g(x) \|^2 - (1 - 2\mu (\alpha + \gamma)) \| g(y_n) - g(x_n) \|^2 \]
\[\leq \| g(x_n) - g(x) \|^2. \quad (4.2.37) \]

74
Combining (4.2.29), (4.2.33) and (4.2.37), it is easy to see that conclusions (4.2.20), (4.2.21) and (4.2.22) hold.

Now, we denote the solution set M^* of (4.1.1) as follows:

$$(x, u, v) \in H \times H \times H: u \in T(x), v \in A(x) \text{ and } \langle N(u, v), \eta(g(y), g(x)) \rangle + \varphi(g(y)) - \varphi(g(x)) \leq 0 \text{ for all } g(y) \in H.$$

Now we are in a position to establish our main result:

Theorem 4.2.1. Let H be a finite-dimensional Hilbert space, T, A: $H \rightarrow H$ be D-continuous set-valued mapping and $N, \eta: H \times H \rightarrow H$ and $\eta: H \rightarrow \mathbb{R}$ are continuous single-valued mappings such that g is invertible and $\eta(g(x), g(y)) = -\eta(g(y), g(x))$ for all $x, y \in H$.

Let $\varphi: H \rightarrow (-\infty, \infty)$ be a lower semicontinuous. Suppose that η is partially relaxed (g, η)-strongly monotone in first and second arguments with respect to T and A with constants $\alpha > 0$ and $\gamma > 0$, respectively, and the solution set M^* of generalized nonlinear mixed variational-like inequalities problem (4.1.1) is nonempty. Then for any $x_0, u_0 \in T(x_0)$ and $v_0 \in A(x_0)$ the iterative sequences $\{x_n\}$, $\{u_n\}$ and $\{v_n\}$ defined by Algorithm 4.2.1, with $0 < \rho$, β, $\mu < 1/2 (\alpha + \gamma)$ converges strongly to a solution $(\hat{x}, \hat{u}, \hat{v})$ of (4.1.1).

Proof. For any $(x, u, v) \in M^*$, from (4.2.20)-(4.2.22) in Lemma 4.2.1 it
allows that the sequences \(\| g(x_{n+1}) - g(x) \|, \| g(z_n) - g(x) \| \) and \(\| g(y_n) - g(x) \| \) are non-increasing and hence \(\{x_n\}, \{z_n\} \) and \(\{y_n\} \) are bounded. Furthermore, we have

\[
\sum_{n=0}^{\infty} (1 - 2p(a + \gamma)) \| g(x_{n+1}) - g(z_n) \|^2 \leq \| g(x_0) - g(x) \|^2,
\]

\[
\sum_{n=0}^{\infty} (1 - 2q(a + \gamma)) \| g(z_n) - g(y_n) \|^2 \leq \| g(z_0) - g(x) \|^2,
\]

\[
\sum_{n=0}^{\infty} (1 - 2u(a + \gamma)) \| g(y_n) - g(x_n) \|^2 \leq \| g(y_0) - g(x) \|^2.
\]

These inequalities imply \(\| g(x_{n+1}) - g(z_n) \| \to 0, \| g(z_n) - g(y_n) \| \to 0 \) and \(g(y_n) - g(x_n) \| \to 0 \) as \(n \to \infty \).

Therefore, we have

\[
\| g(x_{n+1}) - g(x_n) \| \leq \| g(x_{n+1}) - g(z_n) \| + \| g(z_n) - g(y_n) \| + \| g(y_n) - g(x_n) \| \to 0
\]

as \(n \to \infty \).

Since \(\{x_n\} \) is bounded, there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(x_{n_k} \to \bar{x} \) and hence we have \(g(x_{n_k}) \to g(\bar{x}) \) and \(g(y_{n_k}) \to g(\bar{x}) \).

Since \(T \) and \(A \) are \(D \)-continuous on \(H \), by Proposition 1.5.2 of Aubin and Cellina [4.9, p.66], \(T \) and \(A \) are both upper semicontinuous on \(H \). Since \(u_n \in T(x_n) \) and \(v_n \in A(x_n) \) for all \(n = 0, 1, 2, \ldots \), it follows from Proposition 11.11 of Border [4.10, p.57] that there exist subsequence \(u_{n_k} \) of \(\{u_n\} \) and subsequence \(v_{n_k} \) of \(\{v_n\} \) such that \(u_{n_k} \to \hat{u}, v_{n_k} \to \hat{v} \)
\[\hat{u} \in T(\hat{x}) \text{ and } \hat{v} \in A(\hat{x}), \text{ respectively. By (4.2.2), we have} \]
\[\langle g(y_n) - g(x_n), g(y) - g(y_n) \rangle + \left(\mu N(u_n, v_n), \eta(g(y), g(y_n)) \right) \]
\[+ \mu \varphi(g(y)) - \mu \varphi(g(y_n)) \geq 0 \text{ for all } g(y) \in H. \quad (4.2.38) \]

By the continuity of \(N(\cdot, \cdot), \eta(\cdot, \cdot) \) and \(g \) and the lower semicontinuity of \(\varphi \), letting \(j \to \infty \) in (4.2.38), we obtain
\[\langle N(\hat{u}, \hat{v}), \eta(g(y), g(\hat{x})) \rangle + \varphi(g(y)) - \varphi(g(\hat{x})) \geq 0 \text{ for all } g(y) \in H, \]
i.e., \((\hat{x}, \hat{u}, \hat{v}) \) is a solution of (4.1.1). Since (4.2.20) in Lemma 4.2.2 holds for any \((x, u, v) \in M^* \). Hence
\[\| g(x_n) - g(\hat{x}) \| \leq \| g(x_n) - g(\hat{x}) \| \text{ for all } n = 0, 1, 2, 3..., \]
which implies that \(g(x_n) \to g(\hat{x}) \) as \(n \to \infty \). Since \(g \) is invertible, we have \(x_n \to \hat{x} \) as \(n \to \infty \). Since \(T \) and \(A \) are \(D \)-continuous on \(H \), by (4.2.5), we have
\[\| u_n - u_n' \| \leq D(T(x_n), T(x_n')) \to 0, \text{ as } n \to \infty. \]
It follows that for any \(n > 0 \), we have
\[\| u_n - \hat{u} \| \leq \| u_n - u_n' \| + \| u_n' - u_n'' \| + \cdots + \| u_n'' - \cdots - u_n - \hat{u} \| \to 0, \]
as \(n \to \infty \), i.e., \(u_n \to \hat{u} \) as \(n \to \infty \). Similarly, we can prove that \(v_n \to \hat{v} \) as \(n \to \infty \). This completes the proof. \(\blacksquare \)

Corollary 4.2.1. (Theorem 3.1, Ding [29]): Let \(H \) be a finite-dimensional Hilbert space, \(T, A : H \to C(H) \) be \(D \)-continuous set-valued
mapping and \(N, \eta : H \times H \to H \) are continuous single-valued mappings such that \(\eta(x, y) = -\eta(y, x) \) for all \(x, y \in H \). Let \(\varphi : H \to (-\infty, \infty) \) be a lower semicontinuous. Suppose that \(N(.,.) \) is partially relaxed \(\eta \)-strongly monotone in first and second arguments with respect to \(T \) and \(A \) with constants \(\alpha > 0 \) and \(\gamma > 0 \), respectively, and the solution set \(\text{Sol}(2.1) \) of \(\text{GMVLIP}(2.1) \) is nonempty. Then for any \(x_0 \in H, u_0 \in T(x_0) \) and \(v_0 \in A(x_0) \) the iterative sequences \(\{x_n\}, \{u_n\} \) and \(\{v_n\} \) defined by Algorithm 3.1, with \(0 < \rho, \beta, \mu < \frac{1}{2(\alpha + \gamma)} \) converges strongly to a solution \((\hat{x}, \hat{u}, \hat{v})\) of \(\text{GMVLIP}(2.1) \).

Corollary 4.2.2. (Theorem 3.1, Ding [25]): Let \(H \) be a finite-dimensional Hilbert space, \(T, A : H \to C(H) \) be \(\bar{H} \)-continuous set-valued mapping and \(N : H \times H \to H \) and \(g : H \to H \) are continuous single-valued mappings such that \(g \) is invertible.

Let \(\varphi : H \to (-\infty, \infty) \) be a lower semicontinuous. Suppose that \(N(.,.) \) is \(g \)-partially relaxed strongly monotone in first and second arguments with respect to \(T \) and \(A \) with constants \(\alpha > 0 \) and \(\gamma > 0 \), respectively, and the solution set \(\text{Sol}(2.1) \) of \(\text{GNMVIP}(2.1) \) is nonempty. Then for any given \(x_0 \in H, u_0 \in T(x_0) \) and \(v_0 \in A(x_0) \) the iterative sequences \(\{x_n\}, \{u_n\} \) and \(\{v_n\} \) defined by Algorithm 3.1, with \(0 < \rho, \beta, \mu < \frac{1}{2(\alpha + \gamma)} \) converges strongly to a solution \((\hat{x}, \hat{u}, \hat{v})\) of \(\text{GNMVIP}(2.1) \).
REFERENCES

* * * * *