List of figures

Fig. 1.1 Energy level diagram of sodium
Fig.1.2 One dimensional energy diagram
Fig. 1.3 Two dimensional silicon crystal.
Fig. 1.4 Fermi energy on the temperature and doping level of impurity.
Fig. 1.5 Direct transition from the valence band to the conduction band.
Fig. 1.6 Indirect transition from the valence band to the conduction band.
Fig.1.7 Excitation level and the associated absorption
Fig. 1.8 Schematic diagram of free carrier absorption
Fig. 1.9 Various absorption processes involving impurities.
Fig. 1.10 Comparison of the band gap (Eg) of some of the TCOs and transmission behaviour along with spectral solar irradiance of AM '1.5.
Fig. 1.11 Two dimensional lattice of
(a) Stoichiometric SnO$_2$ and
(b) Non-stoichiometric SnO$_2$
Fig. 1.12 (a) doped two dimensional SnO$_2$ lattice
(c) F.doped two dimensional SnO$_2$ lattice
Fig.1.13 Tetragonal rutile structure of SnO$_2$
Fig. 1.14 (a) Body centred cubic structure of In$_2$O$_3$
(b) Location of the two crystallographically non-equivalent Indium atoms.
(c) Diagram of the unit cell
Fig. 1.15 Two dimensional lattice of Indium Oxide doped with tin.
Fig. 1.16 (a) The band structure of an undoped In$_2$O$_3$
(b) The band structure of heavily doped In$_2$O$_3$
Fig.2.1 Block diagram of spin coating unit
Fig.2.2 The trace of output from the microcontroller for different spin rate

Fig.2.3 Circuit diagram for Microcontroller based Spin Coating System

Fig.2.4 Chasis of spin coating unit

Fig.3.1 Hot probe technique
Fig.3.2 Four point probe technique
Fig.3.3 Schematic set up for a Flail effect measurement.
Fig.3.4 Schematic diagram of the AFM Experiment

Fig.3.5 Plot of $c_i^2 - hv$
Fig.3.6 Typical transmittance spectrum of TCO
Fig.3.7 Schematic set up for a Flail effect measurement.
Fig.3.8 Schematic diagram of the AFM Experiment

Fig.3.9 Plot of $c_i^2 - hv$
Fig.3.10 Typical transmittance spectrum of TCO
Fig.3.11 a² vs hv plots for different number of coatings of TO films

Fig.4.1 Flow chart showing the steps involved for the preparation of tin oxide films using spin coating technique
Fig.4.2 Influence of solute concentration on the resistivity of TO films
Fig.4.3 Variation of viscosity and density of tin chloride solution with number of days of gelation
Fig.4.4 Variation of thickness and resistivity of TO films with turntable spin rate
Fig.4.5 Variation of thickness and resistivity of TO films with turn spinning time
Fig.4.6 Variation of thickness with sq.rt. of spin time of TO films
Fig.4.7 Variation of thickness with inverse of spin rate
Fig.4.8 Variation of thickness with number of coatings of the TO films
Fig.4.9 Variation of resistivity with number of coatings
Fig.4.10 Transmittance spectra of TO films developed at various number of coatings (T=400°C)
Fig.4.11 a² vs hv plots for different number of coatings of TO films
Fig.4.12 XRD patterns of the TO films at 350, 375, 400 and 425°C
Fig.4.13 Variation of heat treatment temperature of TO films
Fig.4.14 Transmittance spectra of TO films developed at 350, 375, 400 and 425°C
Fig. 4.15 a^2 vs hv plots for various heat treatment temperature of TO films

Fig. 4.16 hv vs $(a \cdot hv)^2$ plot for TO films

Fig. 4.17 SEM picture of TO films

Fig. 4.18 AFM pictures of TO films

Fig. 5.1 Variation of resistivity and thickness of the 10 film with solute concentration

Fig. 5.2 Variation of density of precursor sol with gelation time.

Fig. 5.3 Variation of thickness and resistivity with spin rate

Fig. 5.4 Variation of thickness and resistivity with of the 10 film with spin time

Fig. 5.5 Variation of film thickness of IO film with inverse of Sq.rt of Spin time

Fig. 5.6 Variation of film thickness of 10 film with inverse of spin rate

Fig. 5.7 Variation of 10 film with number of coatings

Fig. 5.8 XRD Pattern of 10 thin film developed by varying the number of coatings

Fig. 6.1 XRD patterns for 5% Tin doped Indium oxide films prepared at various number of coatings (N)

Fig. 6.2 XRD patterns for 10% Tin doped Indium, oxide films prepared at various number of coatings (N)

Fig. 6.3 XRD patterns for 15% Tin doped Indium oxide films prepared at various number of coatings (N)

Fig. 6.4 XRD patterns for 20% Tin doped Indium oxide films prepared at various number of coatings (N)

Fig. 6.5 Variation of maximum intensity with percentage of tin dopant concentration (when the number of coatings is varied)

Fig. 6.7 XRD patterns for 10% Tin doped Indium oxide films prepared at different Heat treatment temperature (T)
Fig.6.8 XRD patterns for 15% Tin doped Indium oxide films prepared at different Heat treatment temperature (T)

Fig.6.9 XRD patterns for 20% Tin doped Indium oxide films prepared at different Heat treatment temperature (T)

Fig.6.10 Variation of peak intensity with percentage of tin dopant concentration (when the number of coatings is 425)

Fig.6.11 Variation of resistivity, carrier concentration and mobility of ITO films with number of coatings, at the 5% tin doping concentration

Fig.6.12 Variation of resistivity, carrier concentration and mobility of ITO films with number of coatings, at the 10% tin doping concentration

Fig.6.13 Variation of resistivity, carrier concentration and mobility of ITO films with number of coatings, at the 15% tin doping concentration

Fig.6.14 Variation of resistivity, carrier concentration and mobility of ITO films with number of coatings, at the 20% tin doping concentration

Fig.6.15 Variation of resistivity, carrier concentration and mobility of ITO films with heat treatment temperature, at the 5% tin doping concentration

Fig.6.16 Variation of resistivity, carrier concentration and mobility of ITO films with heat treatment temperature, at the 10% tin doping concentration

Fig.6.17 Variation of resistivity, carrier concentration and mobility of ITO films with heat treatment temperature, at the 15% tin doping concentration

Fig.6.18 Variation of resistivity, carrier concentration and mobility of ITO films with heat treatment temperature, at the 20% tin doping concentration

Fig.6.19 Variation of resistivity, carrier concentration and mobility of ITO thin films with tin doping concentration

Fig.6.20 Transmittance spectra of the 5% tin doped indium oxide films for different number of coatings(Heat treatment temperature = 425 deg.C)
Fig. 6.21 Transmittance spectra of the 10% tin doped indium oxide films for different number of coatings (Heat treatment temperature = 425 deg.C)

Fig.6.22 Transmittance spectra of the 15% tin doped indium oxide films for different number of coatings (Heat treatment: temperature = 425 deg.C)

Fig.6.23 Transmittance spectra of the 20% tin doped indium oxide films for different number of coatings (Heat treatment temperature = 425 deg.C)

Fig.6.24 Transmittance spectra of the 5% tin doped indium oxide films for various heat treatment temperature (Number of coatings=8)

Fig.6.25 Transmittance spectra of the 10% tin doped indium oxide films for various heat treatment temperature (Number of coatings=8)

Fig.6.26 Transmittance spectra of the 15% tin doped indium oxide films for various heat treatment temperature (Number of coatings=8)

Fig.6.27 Transmittance spectra of the 20% tin doped indium oxide films for various heat treatment temperature (Number of coatings=8)

Fig.6.28 SEM pictures of Tin oxide films

Fig.6.29 AFM pictures of Tin oxide films

Fig. 7.1 Metal semiconductor contacts according to the Schottky model

Fig.7.2 A semiconductor surface with a thin native oxide layer
(a) without surface states and
(b) with surface states

Fig. 7.3 The effect of surface states on the barrier height for
(a) low work function metal
(b) a high work function metal

Fig.7.4 Variation in barrier height with oxide thickness for
(a) Au/SiO$_2$/n-Si and
(b) Al/SiO$_2$/p-Si MIS diodes for different interface state densities.
Fig. 7.5 Diode ideality factor (estimated theoretically) plotted as a function of interfacial layer thickness for different interface state density

Fig. 7.6 Theoretical limitation on fill factor for different open circuit voltage for different ideality factor

Fig. 7.7 Variation of open circuit voltage and short circuit current, with the number of coatings of the ITO/n-Si solar cells

Fig. 7.8 Variation of open circuit voltage and short circuit current with heat treatment temperatures of the ITO/n-Si solar cells

Fig. 7.9 Dark I-V curve of 10% tin doped ITO/n-Si junction at room temperature

Fig. 7.10 Illuminated I-V characteristics of 10% doped ITO/n-Si junctions prepared at various temperatures (a) 375 (b) 400 (c) 425 and (d) 450°C