CONTENTS

1. INTRODUCTION 1
 Objectives of the study 7

2. REVIEW OF LITERATURE 9
 2.1 SEARCH OF MARINE ENVIRONMENT 9
 2.2 GENUS BACILLUS 11
 2.2.1 Phylogeny and classification of Bacillus 12
 2.2.2 Bacillus subtilis 13
 2.2.3 Bacillus licheniformis 15
 2.2.4 Sporulation life cycle of Bacillus 16
 2.2.5 The use of Bacillus species for industrial production 16
 2.3 BACTERIOCINS 17
 2.3.1 Classification of bacteriocins from lactic acid bacteria (LAB) 18
 2.3.2 Bacteriocins from genus Bacillus 20
 2.3.2.1 Bacillus licheniformis 20
 2.3.2.2 Bacillus subtilis 21
 2.3.2.3 Bacillus amyloliquefaciens 22
 2.3.2.4 Bacillus cereus 22
 2.3.2.5 Bacillus clausii 22
 2.3.2.6 Bacillus firmus 23
 2.3.2.7 Bacillus lentus 23
 2.3.2.8 Bacillus megaterium 23
 2.3.2.9 Bacillus mycoides 23
 2.3.2.10 Bacillus polyfermenticus 24
 2.3.2.11 Bacillus pumilus 24
2.3.2.12 *Bacillus thuringiensis*
2.3.2.13 *Brevibacillus brevis* (formerly *Bacillus brevis*)
2.3.2.14 *Lysinibacillus sphaericus* (formerly *Bacillus sphaericus*)
2.3.2.15 *Geobacillus stearothermophilus*
2.3.2.16 *Geobacillus thermoleovorans*
2.3.2.17 *Paenibacillus polymyxa*
2.3.2.18 Other *Bacillus* sp.
2.3.2.19 Bacteriocin like inhibitory substance with antibacterial and antifungal activity
2.3.3 Classification of *Bacillus* bacteriocins
2.3.4 Structure of *Bacillus* bacteriocins
2.3.5 Genetics of bacteriocins from *Bacillus* sp.
2.3.5.1 Class I: Post-translationally modified peptides
2.3.5.1.1 Subclass I.1 Single-peptide, elongated lantibiotics
2.3.5.1.2 Subclass I.2. Other single-peptide lantibiotics
2.3.5.1.3 Subclass I.3. Two-peptide lantibiotics
2.3.5.1.4 Subclass I.4. Other post-translationally modified peptides
2.3.5.2 Class II: Non-modified peptides
2.3.5.2.1 Subclass II.1. Pediocin-like peptides
2.3.5.2.2 Subclass II.2. Thuricin-like peptides
2.3.5.3 Class III: Large proteins
2.3.6 Post-translational modifications ensuing active bacteriocin
2.3.7 Bacteriocin immunity
2.3.8 Transport across the cell membrane
2.3.9 Mode of action
2.3.10 Resistance mechanisms
2.3.11 Bacteriocins vs. antibiotics 44
2.3.12 Optimization of culture conditions and media composition 45
2.3.13 Activity measurements 45
2.3.14 Protocols for bacteriocins purification 47
2.3.14.1 Culture media 47
2.3.14.2 Screening methods 47
2.3.14.3 Concentration of the bacteriocin-containing supernatant 48
2.3.14.4 Purification of bacteriocins 48
2.3.14.5 Characterization of bacteriocins using SDS-PAGE 49
2.3.14.6 Bioassay / bacteriocin activity on gel 49
2.3.14.7 Advanced strategies 50
2.3.14.8 Role of Bioinformatics tools in confirming novelty 50
2.3.15 Characterization of bacteriocins 51
2.3.15.1 Molecular mass of bacteriocins 51
2.3.15.2 Isoelectric point (pI) of bacteriocins 51
2.3.15.3 N- Terminal sequencing 53
2.3.15.4 Effect of pH, temperature and proteolytic enzymes on bacteriocin stability 54
2.3.15.5 Effect of surfactants (detergents) on bacteriocins 56
2.3.15.6 Effect of reducing agents, oxidizing agents and metal ions 57
2.3.16 Applications of Bacillus bacteriocins 58
2.3.16.1 Bacteriocins for Human Health 58
2.3.16.2 Livestock applications 59
2.3.16.3 Food applications 60
2.3.16.4 Environmental applications 62
2.3.16.5 Biofilm formation and prevention using bacteriocins 64
3. MATERIALS AND METHODS

3.1 SCREENING FOR BACTERIOCIN PRODUCING BACTERIA FROM MARINE SEDIMENT AND WATER SAMPLES

3.1.1 Sample collection

3.1.2 Isolation of bacteria

3.1.3 Primary screening for bacteriocin producing bacteria

3.1.3.1 Disc diffusion assay

3.1.3.1.1 Preparation of culture supernatant

3.1.3.1.2 Test organisms used in antimicrobial activity testing

3.1.3.2 Quantitative estimation of antibacterial activity by critical dilution assay

3.1.3.3 Protein estimation

3.1.3.4 Specific Activity

3.1.4 Secondary screening for bacteriocin producers

3.1.4.1 Acetone precipitation

3.1.4.2 Ammonium sulphate precipitation

3.1.4.2.1 Dialysis

3.1.5 Stocking of cultures
3.1.5.1 Paraffin oil overlay method 83
3.1.5.2 Glycerol stocking 83
3.1.5.3 Temporary stocking (working stock) 83
3.2 CHARACTERIZATION OF THE BACTERIOCIN PRODUCERS 84
3.2.1 Identification of the isolates selected after acetone precipitation 84
3.2.1.1 DNA isolation 84
3.2.1.1.1 Agarose gel electrophoresis 85
3.2.1.2 Polymerase chain reaction (PCR) 85
3.2.1.3 DNA sequencing and analysis 86
3.2.1.4 Multiple sequence alignment and phylogenetic tree construction 87
3.2.2 Plasmid isolation 87
3.2.2.1 Alkaline lysis method 87
3.2.2.2 Plasmid isolation using Quicklyse ®Mini prep kit (Qiagen) 88
3.2.3 Hemolytic activity of the strains 89
3.2.4 Antibiotic susceptibility test 90
3.2.5 Growth curve and bacteriocin production 90
3.2.5.1 Inoculum preparation 90
3.3 BACTERIOCIN PRODUCTION BY BACILLUS LICHENIFORMIS STRAIN BTHT8 AND BACILLUS SUBTILIS STRAIN BTKF101: OPTIMISATION OF BIOPROCESS VARIABLES BY ‘ONE-FACTOR AT-A-TIME’ METHOD 90
3.3.1 Optimization of different media for bacteriocin production 91
3.3.2 Optimization of sodium chloride concentration for bacteriocin production 91
3.3.3 Optimization of carbon source for bacteriocin production 92
3.3.4 Optimization of inorganic nitrogen sources for
3.3.5 Optimization of organic nitrogen sources for bacteriocin production 92
3.3.6 Optimization of inoculum concentration for bacteriocin production 92
3.3.7 Optimization of tween 80 (surfactant) concentration / its role in bacteriocin production 93
3.3.8 Optimization of initial pH of the medium for bacteriocin production 93
3.3.9 Optimization of incubation temperature for bacteriocin production 93
3.3.10 Optimization of incubation period for bacteriocin production 93
3.3.11 Optimization of agitation for bacteriocin production 94
3.4 PURIFICATION OF THE BACTERIOCINS 94
3.4.1 Ammonium sulphate precipitation 94
3.4.2 Gel filtration chromatography 94
3.4.2.1 Preparation of column 94
3.4.2.2 Sample preparation and application 95
3.4.3 Electro elution of bacteriocin 95
3.4.4 Calculation of fold of purification 96
3.5 CHARACTERIZATION OF THE BACTERIOCINS 96
3.5.1 Sodium dodecyl sulphate-Polyacrylamide gel electrophoresis (SDS-PAGE) 96
3.5.1.1 Glycine SDS-PAGE 97
3.5.1.2 Tricine–SDS-PAGE 98
3.5.1.3 Coomassie staining 98
3.5.1.4 Silver staining
3.1.5.5 Protein Markers for SDS-PAGE
3.5.2 Glycine SDS-PAGE and detection of antibacterial activity
to determine approximate mass of the bacteriocins
3.5.3 Intact mass by MALDI-TOF MS
3.5.4 Isoelectric focusing
3.5.4.1 Rehydration of sample with IPG strip
3.5.4.2 Isoelectric focusing
3.5.4.3 Staining of IPG strips after IEF
3.5.5 N-terminal aminoacid sequence analysis
3.5.6 Effect of physico-chemical parameters on bacteriocin stability
3.5.6.1 Action of proteases on the bacteriocins
3.5.6.2 Effect of temperature on the stability of the bacteriocins
3.5.6.3 Effect of pH on the stability of bacteriocins
3.5.6.4 Effect of various detergents on stability of bacteriocins
3.5.6.5 Effect of various metal ions on the activity of bacteriocins
3.5.6.6 Effect of reducing agents on the stability of bacteriocins
3.5.6.7 Effect of oxidizing agents on bacteriocins
3.5.7 Minimum inhibitory concentration (MIC)
3.5.8 Broth assay to test bactericidal/bacteriostatic nature
of the bacteriocins
3.6 APPLICATION STUDIES
3.6.1 Bacteriocins for the control of biofilms
3.6.2 Bacteriocins for the control of microflora of sea foods
3.6.3 Bioassay using model organism Caenorhabditis elegans:
Pathogenesis and prophylaxis using the bacteriocins
4. RESULTS

4.1 SCREENING FOR BACTERIOCIN PRODUCING BACTERIA FROM MARINE SEDIMENT AND WATER SAMPLES

4.1.1 Isolation of bacteria

4.1.2 Primary screening for bacteriocin producing bacteria

4.1.3 Secondary screening for bacteriocin producing bacteria

4.2 CHARACTERIZATION OF THE BACTERIOCIN PRODUCERS

4.2.1 Identification of the isolates selected after secondary screening

4.2.2 Multiple sequence alignment and phylogenetic tree construction

4.2.3 Plasmid DNA isolation

4.2.4 Hemolytic activity

4.2.5 Antibiotic susceptibility test

4.2.6 Growth curve and bacteriocin production

4.3 BACTERIOCIN PRODUCTION BY BACILLUS LICHENIFORMIS STRAIN BTHT8 AND BACILLUS SUBTILIS STRAIN BTFK101: OPTIMIZATION OF BIOPROCESS VARIABLES BY ‘ONE-FACTOR AT-A-TIME METHOD’

4.3.1 Optimization of different media for bacteriocin production

4.3.2 Optimization of sodium chloride concentration for bacteriocin production

4.3.3 Optimization of carbon sources for bacteriocin production

4.3.4 Optimization of inorganic nitrogen sources for bacteriocin production
4.3.5 Optimization of organic nitrogen sources for bacteriocin production 128
4.3.6 Optimization of inoculum concentration for bacteriocin production 130
4.3.7 Optimization of tween 80 (surfactant) concentration/its role in bacteriocin production 131
4.3.8 Optimization of initial pH of the media for bacteriocin production 133
4.3.9 Optimization of incubation temperature for bacteriocin production 135
4.3.10 Optimization of incubation period for bacteriocin production 136
4.3.11 Optimization of agitation for bacteriocin production 138
4.4 PURIFICATION OF THE BACTERIOCINS 140
4.5 CHARACTERIZATION OF THE BACTERIOCINS 142
4.5.1 SDS- PAGE 142
4.5.2 Intact mass determination by MALDI-TOF Mass spectrometry 144
4.5.3 Isoelectric Focusing (IEF) 145
4.5.4 N-terminal aminoacid sequence analysis 146
4.5.5 Effect of physico-chemical parameters on the stability of bacteriocins 147
4.5.5.1 Action of proteases on the bacteriocins 147
4.5.5.2 Effect of temperature on the stability of bacteriocins 149
4.5.5.3 Effect of pH on the stability of bacteriocins 150
4.5.5.4 Effect of detergents on the stability of bacteriocins 152
4.5.5.5 Effect of metal ions on the activity of bacteriocins 153
4.5.5.6 Effect of reducing agents on the stability of bacteriocins 155
4.5.5.7 Effect of oxidising agent (DMSO) on the stability of bacteriocins 158
4.5.6 Minimum Inhibitory Concentration (MIC) 159
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.7</td>
<td>Growth inhibition assay to test bacteriostatic/bactericidal activity of the bacteriocins</td>
<td>159</td>
</tr>
<tr>
<td>4.6</td>
<td>APPLICATION STUDIES</td>
<td>160</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Bacteriocins for the control of biofilm formation</td>
<td>160</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Bacteriocins for the control of microflora of sea foods</td>
<td>162</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Bioassay using model organism Caenorhabditis elegans: Pathogenesis and prophylaxis using the bacteriocins</td>
<td>163</td>
</tr>
<tr>
<td>5.</td>
<td>DISCUSSION</td>
<td>167</td>
</tr>
<tr>
<td>5.1</td>
<td>Isolation of bacteriocin producing bacteria from marine environment</td>
<td>167</td>
</tr>
<tr>
<td>5.2</td>
<td>Characterization of bacteriocin producing bacteria</td>
<td>169</td>
</tr>
<tr>
<td>5.3</td>
<td>Optimization of bioprocess variables by ‘one-factor at-a-time’ method</td>
<td>174</td>
</tr>
<tr>
<td>5.4</td>
<td>Purification of the bacteriocins</td>
<td>181</td>
</tr>
<tr>
<td>5.5</td>
<td>Characterization of the bacteriocins</td>
<td>183</td>
</tr>
<tr>
<td>5.6</td>
<td>Application studies</td>
<td>189</td>
</tr>
<tr>
<td>6.</td>
<td>SUMMARY AND CONCLUSION</td>
<td>193</td>
</tr>
<tr>
<td>7.</td>
<td>REFERENCES</td>
<td>201</td>
</tr>
<tr>
<td>8.</td>
<td>APPENDIX</td>
<td>269</td>
</tr>
<tr>
<td>9.</td>
<td>LIST OF PUBLICATIONS</td>
<td>287</td>
</tr>
</tbody>
</table>