CHAPTER 5

τ*-GENERALIZED HOMEOMORPHISM IN TOPOLOGICAL SPACES

5.1 INTRODUCTION

5.2 τ*-GENERALIZED OPEN MAPS AND τ*-GENERALIZED CLOSED MAPS IN TOPOLOGICAL SPACES

In this section, the notion of τ*-generalized open maps and τ*-generalized closed maps in topological spaces are introduced and some of their properties are investigated. Relationships of these maps with some existing maps are examined.

Definition 5.2.1: A map $f : X \rightarrow Y$ is said to be τ*-generalized open map (respectively τ*-generalized closed map) if for each g-open set (respectively g-closed set) U in X, $f(U)$ is τ*-g-open set (respectively τ*-g-closed set) in Y.

Theorem 5.2.2: For any bijection $f : X \rightarrow Y$, the following statements are equivalent:
(a) The inverse function \(f^{-1} : Y \rightarrow X \) is \(\tau^* \)-g-continuous.

(b) \(f \) is a \(\tau^* \)-g-open map.

(c) \(f \) is a \(\tau^* \)-g-closed map.

Proof:

(a) \(\Rightarrow \) (b). Let \(G \) be any \(g \)-open set in \(X \). Since \(f^{-1} \) is \(\tau^* \)-g-continuous, the inverse image of \(G \) under \(f^{-1} \) is \(\tau^* \)-g-open in \(Y \). That is \((f^{-1})^{-1}(G) = f(G) \) is \(\tau^* \)-g-open in \(Y \) and so \(f \) is a \(\tau^* \)-g-open map. Hence (a) \(\Rightarrow \) (b).

(b) \(\Rightarrow \) (c) Let \(F \) be any \(g \)-closed set in \(X \). Then \(F^c \) is \(g \)-open in \(X \). Since \(f \) is a \(\tau^* \)-g-open map, \(f(F^c) \) is \(\tau^* \)-g-open in \(Y \). But \(f(F^c) = Y - f(F) \). Therefore \(Y - f(F) \) is \(\tau^* \)-g-open in \(Y \) and so \(f(F) \) is \(\tau^* \)-g-closed in \(Y \). Hence, \(f \) is a \(\tau^* \)-g-closed map. Thus, (b) \(\Rightarrow \) (c).

(c) \(\Rightarrow \) (a) Let \(F \) be any \(g \)-closed set in \(X \). Since \(f \) is a \(\tau^* \)-g-closed map, \(f(F) \) is \(\tau^* \)-g-closed in \(Y \). But \(f(F) = (f^{-1})^{-1}(F) \). Therefore the inverse map \(f^{-1} \) is \(\tau^* \)-g-continuous. Thus (c) \(\Rightarrow \) (a). Hence (a), (b) and (c) are equivalent.

Theorem 5.2.3: A map \(f : X \rightarrow Y \) is \(\tau^* \)-g-closed if and only if for each subset \(S \) of \(Y \) and for each \(g \)-open set \(U \) containing \(f^l(S) \), there is a \(\tau^* \)-g-open set \(V \) of \(Y \) such that \(S \subseteq V \) and \(f^l(V) \subseteq U \).

Proof: Suppose \(f \) is a \(\tau^* \)-g-closed map. Let \(S \) be a subset of \(Y \) and \(U \) be a \(g \)-open set of \(X \) such that \(f^l(S) \subseteq U \). Then \(V = Y - f(X - U) \) is a \(\tau^* \)-g-open set containing \(S \) such that \(f^l(V) \subseteq U \).
Conversely, suppose F is a g-closed set in X. Then $f^{-1}(Y-f(F)) = X - F$ and $X - F$ is g-open. By hypothesis, there is a τ^*-g-open set V of Y such that $Y-f(F) \subseteq V$ and $f^{-1}(V) \subseteq X - F$. Therefore $F \subseteq X - f^{-1}(V)$. Hence $Y - V \subseteq f(F) \subseteq f(X - f^{-1}(V)) \subseteq Y - V$, which implies $f(F) = Y - V$. Since $Y - V$ is τ^*-g-closed, $f(F)$ is τ^*-g-closed and thus f is a τ^*-g-closed map.

Theorem 5.2.4: If $f : X \rightarrow Y$ is τ^*-g-continuous and τ^*-g-closed and A is a τ^*-g-closed set of X, then $f(A)$ is a τ^*-g-closed set in Y.

Proof: Let $f(A) \subseteq O$ where O is a g-open set of Y. Since f is τ^*-g-continuous, $f^{-1}(O)$ is a τ^*-g-open set containing A. Hence $\text{cl}^*(A) \subseteq f^{-1}(O)$ as A is a τ^*-g-closed set. Since f is τ^*-g-closed, $f(\text{cl}^*(A))$ is a τ^*-g-closed set contained in the g-open set O, which implies that $\text{cl}^*(f(\text{cl}^*(A))) \subseteq O$ and hence $\text{cl}^*(f(A)) \subseteq O$. So $f(A)$ is a τ^*-g-closed set in Y.

Theorem 5.2.5: If $f : X \rightarrow Y$ is τ^*-g-closed and A is g-closed set in X then $f_A : A \rightarrow Y$ is τ^*-g-closed.

Proof: Let V be a g-closed set in A. Then V is g-closed in X. By Theorem 3.2.13, V is a τ^*-g-closed set in X. By Theorem 5.2.4, $f(V)$ is τ^*-g-closed in Y. But $f_A(V) = f(V)$. Therefore $f(V)$ is τ^*-g-closed in Y. Therefore $f_A : A \rightarrow Y$ is a τ^*-g-closed map.

Theorem 5.2.6: If $f : X \rightarrow Y$ is both continuous map and τ^*-g-closed map from a normal space X onto a space Y, then Y is normal.

Proof: Let A and B be disjoint closed sets of Y. Since f is g-continuous, $f^{-1}(A), f^{-1}(B)$ are disjoint closed sets of X. Since X is normal, there are disjoint open sets U, V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since every open set
is g-open, \(f^{-1}(A) \) and \(f^{-1}(B) \) are g-open sets. By Theorem 5.2.3 and since \(f \) is \(\tau^* \)-g-closed, there are \(\tau^* \)-g-closed sets \(G, H \) in \(Y \) such that \(A \subseteq G, B \subseteq H \) and \(f^{-1}(G) \subseteq U \) and \(f^{-1}(H) \subseteq V \). Since \(U, V \) are disjoint, \(\text{int} (G) \) and \(\text{int} (H) \) are disjoint open sets. Since \(G \) is \(\tau^* \)-g-open, \(A \) is closed and \(A \subseteq G \Rightarrow A \subseteq \text{int} (G) \). Similarly \(B \subseteq \text{int} (H) \). Hence \(Y \) is normal.

Theorem 5.2.7: If \(f : X \rightarrow Y \) is an open map then it is \(\tau^* \)-g-open map provided \(X \) is a \(T_{1/2} \) space.

Proof: Let \(f : X \rightarrow Y \) be an open map. Suppose \(U \) is a g-open set in \(X \). Since \(X \) is a \(T_{1/2} \) space, \(U \) is open in \(X \). Then by the assumption, \(f(U) \) is open in \(Y \). Also by Theorem 3.2.10, \(f(U) \) is \(\tau^* \)-g-open in \(Y \). Hence \(f \) is a \(\tau^* \)-g-open map.

Remark 5.2.8: The following example shows that above theorem need not be true if \(X \) is not a \(T_{1/2} \) space.

Example 5.2.9: Let \(X = Y = \{ a, b, c \}, \tau = \{ X, \phi, \{ a \} \} \) and \(\sigma = \{ Y, \phi, \{ a \}, \{ c \}, \{ a, c \}, \{ b, c \} \} \). Let \(f : X \rightarrow Y \) be an identity function. Then \(f \) is an open map. On the other hand, it is not a \(\tau^* \)-g-open map, since for the g-open set \(\{ b \} \) in \(X \), the image of \(\{ b \} \) under \(f \) is not \(\tau^* \)-g-open in \(Y \).

Theorem 5.2.10: If \(f : X \rightarrow Y \) is a g-open map then it is \(\tau^* \)-g-open provided \(X \) is a \(T_{1/2} \) space.

Proof: Let \(f : X \rightarrow Y \) be a g-open map. Suppose \(U \) is a g-open set in \(X \). Since \(X \) is a \(T_{1/2} \) space, \(U \) is open in \(X \). By the assumption, \(f(U) \) is g-open in \(Y \). Again, by the Theorem 3.2.13, \(f(U) \) is \(\tau^* \)-g-open in \(Y \). Therefore \(f \) is a \(\tau^* \)-g-open map.
Remark 5.2.11: The following example shows that above theorem need not be true if X is not a $T_{1/2}$ space.

Example 5.2.12: Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{c\}, \{b, c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Let $f : X \to Y$ be an identity function. Then f is g-open. However, it is not τ^*-g-open, since for the g-open set $\{b\}$ in X, the image of $\{b\}$ under f is not τ^*-g-open in Y.

Theorem 5.2.13: If $f : X \to Y$ is strongly g-open map then it is τ^*-g-open provided X is a $T_{1/2}$ space.

Proof: Let $f : X \to Y$ be a strongly g-open map. Suppose U is a g-open set in X. Since X is a $T_{1/2}$ space, U is open in X. By the assumption, $f(U)$ is strongly g-open in Y. Again, by the Theorem 3.2.16, $f(U)$ τ^*-g-open in Y. Hence f is a τ^*-g-open map.

Remark 5.2.14: The following example shows that above theorem need not be true if X is not a $T_{1/2}$ space.

Example 5.2.15: Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $f : X \to Y$ be an identity function. Then f is strongly g-open map. However, it is not τ^*-g-open, since for the g-open set $\{c\}$ in X, the image of $\{c\}$ under f is not τ^*-g-open in Y.

Remark 5.2.16: The following examples show that τ^*-g-open map is independent from the strongly α-open map.

Example 5.2.17: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \emptyset, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}$. Then
f is strongly α-open. However, it is not τ^*-g-open, since for the g-open set \{a\} in X, the image of \{a\} under f is not τ^*-g-open in Y.

Example 5.2.18: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, c\}\}$. Then f is a τ^*-g-open map. On the other hand, it is not a strongly α-open map, since for the α-open set \{a\} in X, the image of \{a\} under f is not α-open in Y.

Remark 5.2.19: The following examples show that τ^*-g-open map is independent from the strongly semi-open map.

Example 5.2.20: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is a strongly semi-open map. But it is not a τ^*-g-open map, since for the g-open set \{b\} in X, the image of \{b\} under f is not τ^*-g-open in Y.

Example 5.2.21: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, c\}\}$. Then f is a τ^*-g-open map. However, it is not a strongly semi-open map, since for the semi-open set \{a, b\} in X, the image of \{a, b\} under f is not semi-open in Y.

Remark 5.2.22: The following examples show that τ^*-g-open map is independent from the strongly pre-open map.

Example 5.2.23: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. Then f is a strongly pre-open map. But it is not a τ^*-g-open map, since for the g-open set $V = \{b\}$ in X, the image of \{b\} under f is not τ^*-g-open in $Y.$
Example 5.2.24: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \emptyset, \{a\}\}$ and $\sigma = \{Y, \emptyset, \{b\}, \{a, c\}\}$. Then f is a τ^*-g-open map. On the other hand, it is not a strongly pre-open map, since for the pre-open set $\{a\}$ in X, the image of $\{a\}$ under f is not pre-open in Y.

Remark 5.2.25: The following examples show that τ^*-g-open map is independent from the quasi α-open map.

Example 5.2.26: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \emptyset, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then f is a quasi α-open map. However, it is not a τ^*-g-open map, since for the g-open set $\{c\}$ in X, the image of $\{c\}$ under f is not τ^*-g-open in Y.

Example 5.2.27: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \emptyset, \{b\}\}$ and $\sigma = \{Y, \emptyset, \{c\}, \{a, b\}\}$. Then f is a τ^*-g-open map. But it is not a quasi α-open map, since for the α-open set $\{b\}$ in X, the image of $\{b\}$ under f is not open in Y.

Remark 5.2.28: The following examples show that τ^*-g-open map is independent from the quasi semi-open map.

Example 5.2.29: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \emptyset, \{b\}, \{a, c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then f is a quasi semi-open map. On the other hand, it is not a τ^*-g-open map, since for the g-open set $\{c\}$ in X, the image of $\{c\}$ under f is not τ^*-g-open in Y.

Example 5.2.30: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \emptyset, \{c\}, \{a, c\}, \{b, c\}\}$ and $\sigma = \{Y, \emptyset, \{c\}\}$. Then f is a τ^*-g-open map. However, it is not a quasi semi-open map, since for the semi-open set $\{b, c\}$ in X, the image of $\{b, c\}$ under f is not open in Y.
Remark 5.2.31: The following examples show that τ^*-g-open map is independent from the quasi pre-open map.

Example 5.2.32: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, b\}\}$. Then f is quasi pre-open. On the other hand, it is not a τ^*-g-open map, since for the g-open set $\{a, c\}$ in X, the image of $\{a, c\}$ under f is not τ^*-g-open in Y.

Example 5.2.33: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \phi, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{c\}\}$. Then f is a τ^*-g-open map. But it is not a quasi pre-open map, since for the pre-open set $\{a, c\}$ in X, the image of $\{a, c\}$ under f is not open in Y.

Remark 5.2.34: The following examples show that τ^*-g-open map is independent from the pre-open map.

Example 5.2.35: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is a pre-open map. However, it is not a τ^*-g-open map, since for the g-open set $\{b\}$ in X, the image of $\{b\}$ under f is not τ^*-g-open in Y.

Example 5.2.36: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{c\}\}$. Then f is a τ^*-g-open map. On the other hand, it is not a pre-open map, since for the open set $\{a, b\}$ in X, the image of $\{a, b\}$ under f is not pre-open in Y.

Remark 5.2.37: The following examples show that τ^*-g-open map is independent from the semi-open map.

Example 5.2.38: Let $X = Y = \{a, b, c\}$ and let $f : X \to Y$ be an identity function. Let $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}$. Then f is a semi-open map. However, it is not a τ^*-g-open map, since for the g-open set $\{a\}$ in X, the image of $\{a\}$ under f is not τ^*-g-open in Y.
Example 5.2.39: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a, c\}\}$. Then f is a $\tau^*\text{-g-open}$ map. But it is not a semi-open map, since for the open set $\{a\}$ in X, the image of $\{a\}$ under f is not semi-open in Y.

Remark 5.2.40: The following examples show that $\tau^*\text{-g-open}$ map is independent from the $\alpha\text{-open}$ map.

Example 5.2.41: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a, b\}, \{a, c\}\}$. Then f is an $\alpha\text{-open}$ map. On the other hand, it is not a $\tau^*\text{-g-open}$ map, since for the g-open set $\{c\}$ in X, the image of $\{c\}$ under f is not $\tau^*\text{-g-open}$ in Y.

Example 5.2.42: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. Then f is a $\tau^*\text{-g-open}$ map. However, it is not an $\alpha\text{-open}$ map, since for the open set $\{a, b\}$ in X, the image of $\{a, b\}$ under f is not $\alpha\text{-open}$ in Y.

Remark 5.2.43: The following examples show that $\tau^*\text{-g-open}$ map is independent from the semi pre-open map.

Example 5.2.44: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. Then f is a semi pre-open map. On the contrary, it is not a $\tau^*\text{-g-open}$ map, since for the g-open set $\{c\}$ in X, the image of $\{c\}$ under f is not $\tau^*\text{-g-open}$ in Y.

Example 5.2.45: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Then f is a $\tau^*\text{-g-open}$ map. But it is not a semi pre-open map, since for the open set $\{b\}$ in X, the image of $\{b\}$ under f is not sp-open in Y.
Remark 5.2.46: The above discussion leads to the Figure 5.1.

![Diagram](https://via.placeholder.com/150)

Figure 5.1 Independent relationship of τ^*-g-open map from other open maps

5.3 τ^*-GENERALIZED HOMEOMORPHISMS IN TOPOLOGICAL SPACES

In this section, we introduce and study the notion of τ^*-g-homeomorphism and τ^*-gc-homeomorphisms in topological spaces.

Definition 5.3.1: A bijection $f : (X, \tau^*) \to (Y, \sigma^*)$ is called τ^*-generalized homeomorphism (briefly τ^*-g-homeomorphism) if f is both τ^*-g-continuous function and τ^*-g-open map.

Theorem 5.3.2: If $f : X \to Y$ is bijective and τ^*-g-continuous, then the following statements are equivalent:

(a) f is a τ^*-g-open map.

(b) f is a τ^*-g-homeomorphism.

(c) f is a τ^*-g-closed map.
Proof:

(a) \(\Rightarrow\) (b). By assumption, \(f\) is bijective, \(\tau^*\)-g-continuous and \(\tau^*\)-g-open. Then by definition, \(f\) is \(\tau^*\)-g-homeomorphism. Hence (a) \(\Rightarrow\) (b).

(b) \(\Rightarrow\) (c). Since \(f\) is \(\tau^*\)-g-homeomorphism, it is bijective, \(\tau^*\)-g-open and \(\tau^*\)-g-continuous. Then by Theorem 5.2.2, \(f\) is a \(\tau^*\)-g-closed map. Hence (b) \(\Rightarrow\) (c).

(c) \(\Rightarrow\) (a). By assumption, \(f\) is \(\tau^*\)-g-closed and bijective. Therefore by Theorem 5.2.2, \(f\) is \(\tau^*\)-g-open map. Hence (c) \(\Rightarrow\) (a). Thus (a), (b) and (c) are equivalent.

\textbf{Theorem 5.3.3:} Let \(X\) and \(Z\) be any two topological spaces and let \(Y\) be a \(\tau^*\)-T\(_g\)-space. If \(f : X \rightarrow Y\) and \(g : Y \rightarrow Z\) be \(\tau^*\)-g-homeomorphisms, then the composition \(g \circ f : X \rightarrow Z\) is also \(\tau^*\)-g-homeomorphisms.

\textbf{Proof:} Let \(U\) be a g-closed set in \(Z\). Since \(g : Y \rightarrow Z\) is \(\tau^*\)-g-continuous, \(g^{-1}(U)\) is \(\tau^*\)-g-closed in \(Y\). Since \(Y\) is a \(\tau^*\)-T\(_g\)-space, \(g^{-1}(U)\) is g-closed in \(Y\).

By the assumption of \(f\), \(f^{-1}[g^{-1}(U)]\) is a \(\tau^*\)-g-closed in \(X\). But \(f^{-1}[g^{-1}(U)] = (g \circ f)^{-1}(U)\). Hence \(g \circ f\) is \(\tau^*\)-g-continuous.

Again, let \(U\) be a g-open set in \(X\). Since \(f\) is a \(\tau^*\)-g-open map, \(f(U)\) is \(\tau^*\)-g-open in \(Y\). And since \(Y\) is a \(\tau^*\)-T\(_g\)-space, \(f(U)\) is g-open in \(Y\). Also by the assumption of \(g\), \(g[f(U)]\) is a \(\tau^*\)-g-open set in \(Z\). But \(g[f(U)] = (g \circ f)(U)\). Hence \((g \circ f)\) is a \(\tau^*\)-g-open map. Thus, \(g \circ f : X \rightarrow Z\) is both \(\tau^*\)-g-continuous and \(\tau^*\)-g-open map. Hence it is \(\tau^*\)-g-homeomorphisms.
Theorem 5.3.4: If \(f : X \rightarrow Y \) is g-homeomorphism then it is \(\tau^* \)-g-homeomorphism provided both X and Y are T\(_{1/2}\) spaces.

Proof: Let \(f : X \rightarrow Y \) be g-homeomorphism. Then \(f \) is both g-continuous function and g-open map. By Theorem 4.2.5, \(f \) is \(\tau^* \)-g-continuous. Also, by Theorem 5.2.10, \(f \) is a \(\tau^* \)-g-open map. Hence \(f \) is \(\tau^* \)-g-homeomorphism.

Remark 5.3.5: The following examples show that the above theorem need not be true if X and Y are not T\(_{1/2}\) spaces.

Example 5.3.6: Let \(X=\{a, b, c\} \), \(\tau = \{X, \emptyset, \{b\}\} \) and \(\sigma = \{Y, \emptyset, \{b\}, \{a, b\}, \{b, c\}\} \). Let \(f:X \rightarrow Y \) be an identity function. Here X is not a T\(_{1/2}\) space. Clearly \(f \) is g-homeomorphism. But it is not \(\tau^* \)-g-open map, since for the g-open set \(V=\{a\} \) in X, the image \(f(V) \) is not \(\tau^* \)-g-open in Y.

Example 5.3.7: Let \(X=\{a, b, c\} \), \(\tau = \{X, \emptyset, \{c\}\} \) and \(\sigma = \{Y, \emptyset, \{b\}, \{b, c\}\} \). Let \(f:X \rightarrow Y \) be an identity function. Here Y is not a T\(_{1/2}\) space. Then \(f \) is g-homeomorphism. However, it is not \(\tau^* \)-g-open map, since for the g-open set \(V=\{a, c\} \) in X, the image \(f(V) \) is not \(\tau^* \)-g-open in Y.

Theorem 5.3.8: If \(f : X \rightarrow Y \) is strongly g-homeomorphism then it is \(\tau^* \)-g-homeomorphism provided X is a T\(_{1/2}\) space.

Proof: Let \(f : X \rightarrow Y \) be strongly g-homeomorphism. Then by the definition, \(f \) is both strongly g-continuous function and strongly g-open map. By Theorem 4.2.8, \(f \) is \(\tau^* \)-g-continuous. Also, by Theorem 5.2.13, \(f \) is \(\tau^* \)-g-open. Therefore \(f \) is \(\tau^* \)-g-homeomorphism.

Remark 5.3.9: The following example shows that the above theorem need not be true if X is not a T\(_{1/2}\) space.
Example 5.3.10: Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Let $f : X \to Y$ be an identity function. Here X is not a $T_{1/2}$ space. Clearly f is strongly g-homeomorphism. But it is not τ^*-g-open map, since for the g-open set $V = \{a\}$ in X, the image $f(V)$ is not τ^*-g-open in Y.

Definition 5.3.11: A bijection $f : X \to Y$ is said to be τ^*-gc-homeomorphisms if f is τ^*-gc-irresolute and its inverse f^{-1} is also τ^*-gc-irresolute. The space (X, τ^*) and (Y, σ^*) are said to be τ^*-gc-homeomorphic if there exists a τ^*-gc-homeomorphism from (X, τ^*) to (Y, σ^*).

Notations: The family of all τ^*-gc-homeomorphisms [respectively τ^*-g-homeomorphisms, homeomorphisms, g-homeomorphism, gc-homeomorphism] from a topological space X onto itself is denoted by τ^*-gch(X) [respectively τ^*-gh(X), h(X), gh(X), gch(X)].

Theorem 5.3.12: Let X be a topological space. Then (i) the set τ^*-gch(X) is a group under the composition of maps and (ii) gh(X) is a subgroup of the group τ^*-gch(X).

Proof:

(i) Let $f, g \in \tau^*$-gch(X). Then $g \circ f \in \tau^*$-gch(X) and so τ^*-gch(X) is closed under the composition of functions. Composition of maps is always associative. The identity function $i : X \to X$ is a τ^*-gc-homeomorphisms and so $i \in \tau^*$-gch(X). Also, $f \circ i = i \circ f = f$ for every $f \in \tau^*$-gch(X). If $f \in \tau^*$-gch(X), then $f^{-1} \in \tau^*$-gch(X) and $f \circ f^{-1} = f^{-1} \circ f = i$.
Hence $\tau^*-\text{gch}(X)$ is a group under the composition of functions.

(ii) Let $f : X \rightarrow X$ be g-homeomorphism. Then by Theorem 4.3.4, both f and f^{-1} are $\tau^*-\text{gc}$-irresolute and so f is $\tau^*-\text{gc}$-homeomorphism. Therefore every g-homeomorphism is a $\tau^*-\text{gc}$-homeomorphism and so $\text{gh}(X)$ is a subset of $\tau^*-\text{gch}(X)$. Also $\text{gh}(X)$ is a group under the composition of maps. Therefore $\text{gh}(X)$ is a subgroup of the group $\tau^*-\text{gch}(X)$.

Remark 5.3.13: Semi-homeomorphism is independent from $\tau^*-\text{g}$-homeomorphism as seen from the following examples.

Example 5.3.14: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, c\}\}$. Then f is both irresolute and pre semi-open. So f is semi-homeomorphism. However, it is not $\tau^*-\text{g}$-homeomorphism, since for the g-open set $\{b\}$ in X, the image of $\{b\}$ under f is not $\tau^*-\text{g}$-open in Y.

Example 5.3.15: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. Then f is $\tau^*-\text{g}$-homeomorphisms. On the other hand, it is not pre semi-open, since for the semi-open set $\{a, c\}$ in X, the image of $\{a, c\}$ under f is not a semi-open set in Y.

Remark 5.3.16: sg-homeomorphism is independent from $\tau^*-\text{g}$-homeomorphism as seen from the following examples.

Example 5.3.17: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Then f is
sg-homeomorphism. On the other hand, it is not τ^*-g-homeomorphism, since for the g-closed set $\{a, b\}$ in Y, the inverse image of $\{a, b\}$ is not τ^*-g-closed in X.

Example 5.3.18: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{a, b\}\}$. Then f is τ^*-g-homeomorphisms. But it is not sg-continuous, since for the closed set $\{a, b\}$ in Y, the inverse image of $\{a, b\}$ is not sg-closed in X. Therefore, f is not sg-homeomorphism.

Remark 5.3.19: sg-continuous is independent from τ^*-g-homeomorphism as seen from the following examples.

Example 5.3.20: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$. Then f is sg-homeomorphism. On the contrary, it is not a τ^*-g-open map, since for the g-open set $\{c\}$ in X, the image of $\{c\}$ under f is not τ^*-g-open in Y. Therefore f is not τ^*-g-homeomorphism.

Example 5.3.21: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. Then f is τ^*-g-homeomorphisms. However, it is not sg-irresolute, since for the sg-closed set $\{b, c\}$ in Y, the inverse image of $\{b, c\}$ is not sg-closed in X. Therefore f is not sg-homeomorphism.

Remark 5.3.22: sg-continuous is independent from τ^*-g-homeomorphism as seen from the following examples.

Example 5.3.23: Let $X = Y = \{a, b, c\}$ and let $f : X \rightarrow Y$ be an identity function. Let $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{a, c\}, \{b, c\}\}$,
Then \(f \) is gsc-homeomorphism. On the other hand, it is not a \(\tau^* \)-g-open map, since for the g-open set \(\{a\} \) in \(X \), the image of \(\{a\} \) under \(f \) is not \(\tau^* \)-g-open in \(Y \). Therefore \(f \) is not \(\tau^* \)-g-homeomorphism.

Example 5.3.24: Let \(X = Y = \{a, b, c\} \) and let \(f : X \rightarrow Y \) be an identity function. Let \(\tau = \{X, \emptyset, \{a\}\} \) and \(\sigma = \{Y, \emptyset, \{c\}, \{a, b\}\} \). Then \(f \) is \(\tau^* \)-g-homeomorphisms. But \(f^{-1} : Y \rightarrow X \) is not gs-irresolute, since for the gs-closed set \(\{a\} \) in \(Y \), the inverse image of \(\{a\} \) is not gs-closed in \(X \). Therefore \(f \) is not gsc-homeomorphism.

Remark 5.3.25: Above arguments give the following Figure 5.2.

![Diagram](attachment:image.png)

Figure 5.2 Independenty of \(\tau^* \)-g-homeomorphisms

5.4 **CONCLUSION**

In this chapter, \(\tau^* \)-generalized open maps and \(\tau^* \)-generalized closed maps in topological spaces have been defined and some of their properties are studied. Relationship with some existing maps is also investigated. \(\tau^* \)-g-homeomorphism and \(\tau^* \)-gc-homeomorphisms have also been introduced and investigated. In future, the above defined notions can be studied on fuzzy topological spaces and supra topological spaces.