LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Block diagram of a Typical Machine Vision System</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Multilayer Feed-forward Back-propagation Artificial Neural Network</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>RGB colour Model (a) Primary colors representation, (b) Primary colors cube</td>
<td>43</td>
</tr>
<tr>
<td>2.2</td>
<td>System Overview Diagram (a) Block diagram of experimental setup with Machine Vision System (b) Fruit Under Inspection (c) Experimental setup (d) Fruit Gradation Interface</td>
<td>48</td>
</tr>
<tr>
<td>2.3</td>
<td>Overlapping of Red Components in RGB Model for Consecutive Grades at Different Intensities (Indicative graphs, however, not to the exact scale along X-axis)</td>
<td>52</td>
</tr>
<tr>
<td>2.4</td>
<td>Overlapping of Green Components in RGB Model for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale)</td>
<td>54</td>
</tr>
<tr>
<td>2.5</td>
<td>Overlapping of Blue Components in RGB Model for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale)</td>
<td>56</td>
</tr>
<tr>
<td>2.6</td>
<td>Overlapping of Hue Components in HSL Model for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale)</td>
<td>59</td>
</tr>
<tr>
<td>2.7</td>
<td>Overlapping of Saturation Components in HSL Model for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale)</td>
<td>61</td>
</tr>
<tr>
<td>2.8</td>
<td>Overlapping of Luminance Components in HSL Model for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale)</td>
<td>64</td>
</tr>
<tr>
<td>2.9</td>
<td>RGB Components Ranges in RGB Model of Red Delicious Apple (Indicative Graphs, however, not to the exact scale)</td>
<td>66</td>
</tr>
<tr>
<td>2.10</td>
<td>HSL Components Ranges in HSL Model of Red Delicious Apple (Indicative Graphs, however, not to the exact scale)</td>
<td>66</td>
</tr>
</tbody>
</table>
Delicious Apple (Indicative Graphs, however, not to the exact scale)

3.1 Graphical representation of Nearest Neighbour Classification 78

3.2 Graphical Representation of K-Nearest Neighbour Classification 80

3.3 Fruit Colour Based Apple Quality Gradation 82

3.4 Fruit Gradation Process 84

3.5 Classification accuracy of different variants of (a) Nearest Neighbor Classifier (b) K-Nearest Neighbor Classifiers (c) Minimum Mean Distance Classifiers at Illumination Intensity of 486 Lux for Classification of Apples based on colour 90

3.6 Classification accuracy of different variants of (a) Nearest Neighbor Classifier (b) K-Nearest Neighbor Classifiers (c) Minimum Mean Distance Classifiers at Illumination Intensity of 405 Lux for Classification of Apples based on colour 91

3.7 Classification accuracy of different variants of (a) Nearest Neighbor Classifier (b) K-Nearest Neighbor Classifiers (c) Minimum Mean Distance Classifiers at Illumination Intensity of 310 Lux for Classification of Apples based on colour 91

3.8 Classification accuracy of different variants of (a) Nearest Neighbor Classifier (b) K-Nearest Neighbor Classifiers (c) Minimum Mean Distance Classifiers at Illumination Intensity of 253 Lux for Classification of Apples based on colour 92

3.9 Classification accuracy of different variants of (a) Nearest Neighbor Classifier (b) K-Nearest Neighbor Classifiers (c) Minimum Mean Distance Classifiers at Illumination Intensity of 170 Lux for Classification of Apples based on colour 92

4.1 Different shapes for particle analysis 96

4.2 External Fruit attribute based Gradation 100

4.3 Overlapping of Heywood Circulatory Factor Range of Red Delicious Apple for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale) 102
4.4 Overlapping of Equivalent Ellipse Axes Ratio Range of Red Delicious Apple for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale)

4.5 Overlapping of Perimeter Range for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale)

4.6 Overlapping of Hydraulic Radius Range for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale)

4.7 Overlapping of Bruise Perimeter Range for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale)

4.8 Overlapping of Bruise Hydraulic Radius range for Consecutive Grades at Different Intensities (Indicative Graphs, however, not to the exact scale)

5.1 Block Diagram of NNC Based Fruit quality assessor using Shape features

5.2 Block Diagram of NNC Based Fruit Quality Assessor using Size Features

5.3 Block Diagram of NNC Based Fruit Quality Assessor using Bruise Features

5.4 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 486 Lux for Classification of Apples based on shape

5.5 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 405 Lux for Classification of Apples based on shape

5.6 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 310 Lux for Classification of Apples based on shape
5.7 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 253 Lux for Classification of Apples based on shape

5.8 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 170 Lux for Classification of Apples based on shape

5.9 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 486 Lux for Classification of Apples based on size

5.10 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 405 Lux for Classification of Apples based on size

5.11 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 310 Lux for Classification of Apples based on size

5.12 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 253 Lux for Classification of Apples based on size

5.13 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 170 Lux for Classification of Apples based on size

5.14 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 486 Lux for Classification of Apples based on bruise size

5.15 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c)
Minimum Mean Distance Classifiers at Illumination Intensity of 405 Lux for Classification of Apples based on bruise size

5.16 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 310 Lux for Classification of Apples based on bruise size

5.17 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 253 Lux for Classification of Apples based on bruise size

5.18 Classification accuracy of different variants of (a) Nearest Neighbour Classifiers, (b) k-NN Classifiers and (c) Minimum Mean Distance Classifiers at Illumination Intensity of 170 Lux for Classification of Apples based on bruise size

6.1 Artificial Neural Network (ANN) with n neurons in input layer, m neurons in hidden layer and one neuron in output layer

6.2 Fruit Quality Gradation using Neural Classifier

6.3 Learning Process of ANN Classifier

6.4 Proposed ANN Model Structure for estimating the Grade on the basis of Color

6.5 Proposed ANN Model Structure for estimating the Grade on the basis of Shape

6.6 Proposed ANN based ANN Model Structure for estimating the Grade on the basis of Size

6.7 Proposed ANN based ANN Model Structure for estimating the Grade on the basis of Bruise size

6.8 Learning Characteristic of Proposed Neural Models for estimation of Apple Grade using color attribute

6.9 Error (absolute) between actual & estimated apple grades using color attribute

6.10 Regression Curves for color based Grade Estimation using ANN 3-8-4 Structure
6.11 Learning Characteristic of Proposed Neural Models for estimation of Apple Grade using shape attribute

6.12 Error (absolute) between actual & estimated apple grades using shape attribute

6.13 Regression Curves for shape based Grade Estimation using ANN 2-8-4 Structure

6.15 Error (absolute) between actual & estimated apple grades using size attribute

6.16 Regression Curves for size based Grade Estimation using ANN 2-8-4 Structure

6.17 Learning Characteristic of Proposed Neural Models for estimation of Apple Grade using bruise size attribute

6.18 Error (absolute) between actual & estimated apple grades using bruise size attribute

6.19 Regression Curves for bruise size based Grade Estimation using ANN 2-8-4 Structure

7.1 Proposed Machine Vision System for Assessment of Apple Quality

7.2 Proposed Intelligent Virtual Grader (a) Front-panel (b) Color Based Virtual Assessor (c) Shape Based Virtual assessor (d) Size Based Virtual Assessor and (e) Bruise Based Virtual Assessor

7.3 Part of the Control and Computation Algorithm (Block Diagram)

7.4 Proposed Apple Quality Grader

7.5 Proposed Neural Integrator for Estimation of Overall Apple Grade

7.6 Learning Characteristic of Proposed ANN model

7.7 Absolute errors for estimating the overall grade of apples

7.8 Regression Curves for estimating the overall grade of apples
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Fruit Weight estimator using ANN</td>
<td>210</td>
</tr>
<tr>
<td>8.2</td>
<td>Machine Vision System using Proposed Neural Model</td>
<td>212</td>
</tr>
<tr>
<td>8.3</td>
<td>Proposed User-Interactive Virtual Assessor for Estimation of Fruit Grade & weight</td>
<td>212</td>
</tr>
<tr>
<td>8.4</td>
<td>Conventional Neural Model for Estimation of Apple Weight</td>
<td>214</td>
</tr>
<tr>
<td>8.5</td>
<td>Two Separate Neural Models for Estimation of (a) Apple Grade & (b) Apple Weight</td>
<td>215</td>
</tr>
<tr>
<td>8.6</td>
<td>Ensemble-ANN Based Neural Model for Estimation of Apple Grade & Weight</td>
<td>216</td>
</tr>
<tr>
<td>8.7</td>
<td>(a) Learning Characteristic of Proposed ANN model (b) Absolute error for estimating the weight of apples with ANN</td>
<td>218</td>
</tr>
<tr>
<td>8.8</td>
<td>Regression Curves for estimating the weight of apples as a result of (a) Training (b) Validation (c) Test (d) All studies</td>
<td>218</td>
</tr>
<tr>
<td>8.9</td>
<td>Learning Characteristic of Proposed Neural Models for estimation of (a) Apple Grade & (b) Apple Weight</td>
<td>220</td>
</tr>
<tr>
<td>8.10</td>
<td>Error (absolute) between actual & estimated apple grades (a) Grade A (b) Grade B (c) Grade C and (d) Grade D</td>
<td>220</td>
</tr>
<tr>
<td>8.11</td>
<td>Regression Curves for Apple Weight Estimation using ANN 6-22-1 Structure (a) training phase (b) validation phase (c) test phase and (d) all phases</td>
<td>221</td>
</tr>
<tr>
<td>8.12</td>
<td>Learning Characteristic of Ensemble-ANN based Neural Model for Estimation of (a) Apple Grade & (b) Apple Weight</td>
<td>223</td>
</tr>
<tr>
<td>8.13</td>
<td>Error (absolute) for Apple Weight Estimation with (a) 6-22-1 ANN Structure and (b) Ensemble-ANN Structure</td>
<td>224</td>
</tr>
<tr>
<td>8.14</td>
<td>Regression Curves for Apple Weight Estimation using Ensemble-ANN Based Model (a) training phase (b) validation phase (c) test phase and (d) all phases</td>
<td>224</td>
</tr>
</tbody>
</table>