Appendix A

Theory of z-scan technique

1. Closed aperture

For a cubic nonlinear medium, the index of refraction is

\[n = n_0 + \frac{n_2}{2} |E|^2 = n_0 + \Delta n \] \hspace{1cm} (A1)

\(n_2 \) represents nonlinear refractive index. Suppose a Gaussian beam in TEM\(_{00} \) mode having beam waist \(\omega_0 \) is incident on the medium. The electric field for the incident beam is given by

\[E(z, r, t) = E_0(t) \cdot \frac{\omega_0}{w(z)} \exp \left[-\frac{r^2}{\omega^2(z)} - \frac{ikr^2}{2R(z)} e^{-i\phi(z,t)} \right] \] \hspace{1cm} (A2)

with \(E_0 \), the electric field at focus

\[\omega^2(z) = \omega_0^2 \left(1 + \frac{z^2}{z_0^2} \right), \text{ radius of beam} \]

\[R(z) = z \left(1 + \frac{z^2}{z_0^2} \right), \text{ the radius of curvature of the wavefront at position } z \]

\[z_0 = \frac{k\omega_0^2}{2}, \text{ Rayleigh range} \]

\[k = \frac{2\pi}{\lambda}, \text{ the wave vector and} \]

\(e^{-i\phi(z,t)} \) represents the radially uniform phase variation.

Using slowly varying envelope approximation, the radial phase shift \(\Delta \phi(r) \) as a function of position \(z \) is obtained from the following two equations that represent the Gaussian beam propagation through the sample.

\[\frac{d\Delta \phi}{dz} = \Delta n.k \] \hspace{1cm} (A3)

and \[\frac{dI}{dz} = -\alpha I \] \hspace{1cm} (A4)
Here α contains both the linear and nonlinear absorption terms. For cubic nonlinearity and negligible nonlinear absorption, the solution of equations (A3) and (A4) gives the phase variation $\Delta \phi(z,r,t,L)$ at the exit of the medium of length L.

$$\Delta \phi(z,r,t,L) = \Delta \phi(z,t,L) \exp \left[-\frac{2r^2}{\omega^2(z)} \right]$$ \hspace{1cm} (A5)

with $\Delta \phi(z,t,L) = \frac{\Delta \phi_0(t,L)}{1 + \frac{z^2}{z_0^2}}$

and $\Delta \phi_0(t,L)$, the on-axis phase variation at the beam waist is written as

$$\Delta \phi_0(t,L) = k \Delta n L_{\text{eff}}$$ \hspace{1cm} (A6)

Here $L_{\text{eff}} = \frac{1 - e^{-\alpha_0 L}}{\alpha_0}$ is effective thickness, α_0 is the linear absorption coefficient. The complex electric field at the exit of the sample is given by the relation

$$E_z(z,r,t) = E(z,r,t) e^{-\frac{\alpha_0 L}{z} \alpha \Delta \phi(z,r,t)}$$ \hspace{1cm} (A7)

Using Gaussian decomposition method and far-field condition (Distance between sample and aperture plane $>> z_0$) the on-axis normalized transmittance $T(z,\Delta \phi_0)$ and peak-valley transmittance change $\Delta T_{p,v}$ is given by

$$T(z,\Delta \phi_0) = \frac{[E(z,r=0,\Delta \phi)]^2}{[E(z,r=0,\Delta \phi_0 = 0)]^2} = 1 - \frac{4\Delta \phi_0 \frac{z}{z_0}}{\left(\frac{z}{z_0} \right)^2 + 9 \left(\frac{z}{z_0} \right)^2 + 1}$$ \hspace{1cm} (A8)

and $\Delta T_{p,v} = 0.406 (1 - S)^{0.25} |\Delta \phi_0|$, for $|\Delta \phi_0 | \leq \pi$ \hspace{1cm} (A9)

Here S is the aperture transmittance. Using equation (A6) and (A9), the nonlinear refractive index is calculated in closed aperture z-scan system.
2. Open aperture

The absorption coefficient \(\alpha \) for a third order nonlinear medium can be written in terms of linear absorption coefficient \(\alpha_0 \) and nonlinear absorption coefficient \(\beta \) as

\[
\alpha = \alpha_0 + \beta I
\] \hspace{1cm} (A10)

Considering nonlinear absorption, the solution of equations (A3) and (A4) gives the following intensity distribution at exit of the sample.

\[
I_e(z, r, t) = \frac{I(z, r, t)e^{-\alpha L}}{1 + q(z, r, t)}
\] \hspace{1cm} (A11)

Here \(q(z, r, t) = \beta I(z, r, t) L_{\text{eff}} \). By integrating equation (A11) over \(z \) and \(r \), the total power transmitted through the sample is given as

\[
P(z, t) = P_i(t) e^{-\alpha L} \frac{\ln[1 + q_0(z, t)]}{q_0(z, t)}
\] \hspace{1cm} (A12)

with \(P_i(t) = \frac{\pi \alpha_0^2 I_0}{2} \),

\[
q_0(z, t) = \frac{\beta I_0 L_{\text{eff}} \xi_0^2}{z^2 + \xi_0^2}
\]

For \(|q_0| < 1 \), the integration of equation (A12) gives transmittance and normalized transmittance (\(\Delta T \)) difference between baseline and peak/dip as

\[
T(z, S = 1) = \sum_{m=0}^{\infty} \frac{[-q_0(z, 0)]^m}{(m+1)^{3/2}}
\]

\[
\text{and} \quad \Delta T = \frac{\beta I_0 L}{2\sqrt{2}}
\] \hspace{1cm} (A13)

Equation (A14) is used for estimation of nonlinear absorption coefficient in open aperture z-scan.
Appendix B

Degenerate four-wave mixing

1. Wave equation for phase conjugation

Let the input optical field propagating along z-axis is represented by

\[E_1(\omega) = a_1 A_1(z) e^{-i(\omega - k_1)z}, \]

\[E_2(\omega) = a_2 A_2(z) e^{-i(\omega - k_2)z}, \]

\[E_3(\omega) = a_3 A_3(z) e^{-i(\omega - k_3)z} \] \hspace{1cm} (B1)

Here \(a_1, a_2, a_3 \) are the unit vectors along the light polarization direction of wave, \(\omega \) is angular frequency, \(A_1, A_2, \) and \(A_3 \) are amplitude functions of pump beams and \(k \) is the wave vector of optical field. According to the principle of FWM, the forth conjugate wave is generated through third order nonlinear polarization \((P^{(3)}) \) of medium. The wave equation for the amplitude of the generated wave \((E_4) \) is

\[\Delta^2 E_4 + \frac{n_2}{c^2} \frac{\partial^2 E_4}{\partial t^2} = -\frac{4\pi}{c^2} \frac{\partial^2 P^{(3)}}{\partial t^2} \] \hspace{1cm} (B2)

Using slowly varying amplitude approximation \(\left(\left| \frac{d^2 A_4}{dz^2} \right| \ll \left| k \frac{dA_4}{dz} \right| \right) \) and \(E_4(\omega) = a_4 A_4(z) e^{i(\omega - k_4)z} \) as a solution for wave equation, the following coupled equations are obtained

\[\frac{dA_4(z)}{dz} = i\kappa A_4^*(z) \] \hspace{1cm} (B3)

\[\frac{dA_4^*(z)}{dz} = i\kappa^* A_4(z) \] \hspace{1cm} (B4)
Here A_j^* is complex conjugate of input probe wave, $\kappa = \frac{\omega}{2n_0c} \chi^{(3)} A_i A_2$ is coupling coefficient. For boundary conditions $A_j(0) \neq 0$ and $A_j(L) = 0$, the solution of coupled equations (B3) and (B4) are

$$A_j(z) = \frac{\cos[|\kappa|(z - L)]}{\cos(|\kappa|L)} A_j(0)$$ \hspace{1cm} (B5)

$$A_j(z) = i\kappa \frac{\sin[|\kappa|(z - L)]}{|\kappa|} \frac{A_j^*(0)}{\cos(|\kappa|L)}$$ \hspace{1cm} (B6)

For above two waves, the output amplitudes are

$$A_j(L) = \frac{1}{\cos(|\kappa|L)} A_j(0)$$ \hspace{1cm} (B7)

$$A_j(0) = \frac{i\kappa}{|\kappa|} \tan(|\kappa|L) A_j^*(0)$$ \hspace{1cm} (B8)

Equations (B7) and (B8) shows that generated wave is proportional to complex conjugate of probe beam $A_j(0)$.

2. **Intensity of phase conjugate wave**

In order to evaluate third order nonlinear susceptibility $\chi^{(3)}$, equation (B8) has been used. For $|\kappa|L << 1$ equation (B8) becomes

$$A_j(0) = -i\kappa L A_j^*(0) = -i \frac{\omega}{2n_0c} L \chi^{(3)} A_i A_2 A_j^*(0)$$ \hspace{1cm} (B9)

The intensity of a wave of amplitude A is given by

$$I = \frac{1}{2} \varepsilon_0 c n_0 |A|^2$$ \hspace{1cm} (B10)
Substituting equation (B10) in equation (B9), the relation between $\chi^{(3)}$ and intensities of pump, probe and conjugate beams is

$$I_c = \left(\frac{\omega L \chi^{(3)}}{\varepsilon_0 c^2 n_0^2} \right)^2 J_f I_b I_p \tag{B11}$$

For an absorbing material having linear absorption α_0, the above relation becomes

$$I_c = e^{-\alpha_0 L} \left(1 - e^{-\alpha_0 L} \right)^2 \left(\frac{\omega L \chi^{(3)}}{\varepsilon_0 \alpha_0 c^2 n_0^2} \right) J_f I_b I_p \tag{B12}$$
Appendix C

Measurement of harmonic generation in reflection

The second order nonlinear polarization \(P^{(2)} \) is given by the relation

\[
P^{(2)} = \chi^{(2)} E^2
\] \hspace{1cm} (C1)

Here \(E \) is the beam field inside the sample that is related to the incident field \(E_i \) by Fresnel formula given as

\[
E = E_i \cdot \frac{2 \cos \theta_i}{\cos \theta_i + \varepsilon_1^{1/2} \left(1-\sin^2 \theta_i\right)^{1/2}}
\] \hspace{1cm} (C2)

\(\theta_i \) is the angle of incidence and \(\varepsilon_1^{1/2} \) is the linear refractive index of medium at frequency \(\omega \). Using boundary conditions, the solution of wave equation gives the amplitude of reflected \(A_s^R \) and transmitted \(A_r^T \) second harmonic wave.

\[
A_s^R = A_r^T - \frac{4\pi P^{(2)}}{\varepsilon_2 - \varepsilon_1} \]

\[
\varepsilon_2^{1/2} \cos \theta^T A_r^T = \frac{4\pi P^{(2)}}{\varepsilon_2 - \varepsilon_1} \varepsilon_1^{1/2} \cos \theta^s - A_s^R \cos \theta^R
\] \hspace{1cm} (C3)

\[
A_s^R = -\frac{4\pi P^{(2)}}{\varepsilon_2 - \varepsilon_1} \left[\varepsilon_2^{1/2} \cos \theta^T - \varepsilon_1^{1/2} \cos \theta^s \right]
\]

The conservation of tangential component of momentum provides relation between angles of reflection and refraction as

\[
\sin \theta_s^R = \sin \theta^s,
\]
\[
\sin \theta_r^T = \varepsilon_1^{1/2} \sin \theta,
\]
\[
\sin \theta^T = \varepsilon_1^{-1/2} \sin \theta^i
\] \hspace{1cm} (C6)
Finally, the amplitude of reflected second harmonic wave obtained from equations (C1), (C2), (C5) and (C6) is given by

$$\left| A_2^R \right|^2 = \left| \chi^{(2)} \right|^2 F_2^R (\theta, \varepsilon) |A|^4$$

(C7)

Here factor $F_2^R (\theta, \varepsilon)$ given by equation (C8) is dependent on angle of incidence and linear refractive index of the medium, $\varepsilon_1^{1/2}$ at ω and $\varepsilon_2^{1/2}$ at 2ω.

$$F_2^R (\theta, \varepsilon) = \frac{256\pi^2 \cos^4 \theta_i}{\left| \cos \theta_i + \left(\varepsilon_1 - \sin^2 \theta_i \right)^{1/2} \right|^4 \left| \cos \theta_i + \left(\varepsilon_2 - \sin^2 \theta_i \right)^{1/2} \right|^4 \left(\varepsilon_1 - \sin^2 \theta_i \right)^{1/2} + \left(\varepsilon_2 - \sin^2 \theta_i \right)^{1/2} \right|^2}$$

(C8)

Similarly, the amplitude of reflected third harmonic wave is given by

$$\left| A_3^R \right|^2 = \left| \chi^{(3)} \right|^2 F_3^R (\theta, \varepsilon) |A|^6$$

(C9)

Here

$$F_3^R (\theta, \varepsilon) = \frac{1024\pi^2 \cos^6 \theta_i}{\left| \cos \theta_i + \left(\varepsilon_1 - \sin^2 \theta_i \right)^{1/2} \right|^6 \left| \cos \theta_i + \left(\varepsilon_3 - \sin^2 \theta_i \right)^{1/2} \right|^6 \left(\varepsilon_1 - \sin^2 \theta_i \right)^{1/2} + \left(\varepsilon_3 - \sin^2 \theta_i \right)^{1/2} \right|^2}$$

(C10)

$\varepsilon_3^{1/2}$ represents linear refractive index at third harmonic wavelength. Equations (C7) and (C9) are used for estimation of second and third order nonlinear susceptibility.