LIST OF FIGURES

Figure 1.1 Solar irradiance at Sun, AM 0, and AM1.5G illumination

Figure 1.2 A schematic depiction of p-n junction Si solar cell

Figure 1.3 (a) Typical J-V characteristics of solar cells under dark and 1Sun illumination, (b) Another way of representing the J-V data, which is obtained after changing the sign of the photocurrent. This usually done as power generated by the device is positive.

Figure 1.4 Equivalent circuit diagram of a solar cell. The blue shaded region represents the inside of the solar cell.

Figure 1.5 Efficiency improvement of various solar cell technologies.

Figure 1.6 Schematic view of the typical substrate structure of CIGS solar cells (with typical thickness).

Figure 1.7 Schematic depiction of polymer solar cells with corresponding energy diagram

Figure 1.8 (a-d) Schematic depiction of various processes during the operation of polymer solar cells under 1Sun illumination

Figure 1.9 (a-f) various process involved in polymer solar cells.

Figure 1.10 Schematic depiction of carrier transport in inorganic and organic semiconductors

Figure 1.11 (a-d) various device architectures employed in the fabrication of polymer solar cells
Figure 1.12 Schematic depiction of a dye-sensitized solar cell

Figure 1.13 Simple energy level diagram for a DSSC. The basic electron transfer processes are indicated by numbers (1-7). The potentials for a DSSC based on the N$_3$ dye, TiO$_2$, and the I/I$_3$ redox couple are shown.

Figure 1.14 Various possible recombination processes (indicated with red solid line) occurring in (a) polymer solar cells, and (b) dye-sensitized solar cells.

Figure 2.1 The photograph of the MBraun modular glove box system.

Figure 2.2 A schematic depiction of various processes involved in making 3 x 3 array polymer solar cell.

Figure 2.3 Schematic depiction of fabrication of bilayer solar cells

Figure 2.4 Schematic depiction of ZnO NW growth on ITO substrates via hydrothermal route through ZnO nanoparticles. The schematic shows step by step process from seed layer to nanowire growth

Figure 2.5 Hybrid solar cells based on (a) ZnO-NW structures and (b) porphyrin-modified ZnO-NW structures.

Figure 2.6 Schematic depiction of preparation of platinum films on FTO electrodes with hexachloroplatinic acid solution.

Figure 2.7 (a) Schematic showing the formation of free-standing PPy films at the aqueous (0.1 M FeCl$_3$)/organic (0.1 M pyrrole) interface. (b) & (c) Photograph of the free-standing PPy films mechanically lifted with a pair of tweezers.
Figure 2.8 Photographs of DSSC components, (1) Highly transparent TiO$_2$ photoanode, (2) Dye-coated TiO$_2$ photoanode, (3) platinum/FTO counter electrode, and (4) DSSC assembly with (2) and (3) electrodes.

Figure 3.1 Measured (symbol) and fitted (solid line) J–V characteristics of as-prepared and thermally annealed (at various temperatures) P3HT:PCBM bulk-heterojunction solar cells.

Figure 3.2 Variation of different photovoltaic parameters namely open-circuit voltage (V_{oc}), short-circuit current (J_{sc}), fill factor (FF), and power conversion efficiency (η) of P3HT:PCBM bulk-heterojunction solar cells as a function of annealed temperature.

Figure 3.3 Raman spectra of as-cast P3HT, PCBM and P3HT:PCBM films recorded using 514 nm excitation. Inset shows the molecular structure of P3HT molecule. Substrate peak is represented by(*)

Figure 3.4 Typical normalized Raman spectra with respect to the intensity of the C–C mode for (a) P3HT and (b) P3HT:PCBM films. (1) as-deposited films at room temperature; (2) at 130°C and (3) again at room temperature after cooling from 130°C.

Figure 3.5 (a) and (b) are the variation of full-width-half-maximum (FWHM) of symmetric C=C stretching mode for P3HT and P3HT:PCBM films, respectively during heating and cooling cycles upto annealing temperature of 180°C. (c) and (d) are the variation of the C=C/C–C intensity ratios for P3HT and P3HT:PCBM films, respectively during heating and cooling cycles of annealing temperature upto 130°C.
Figure 3.6 Real time optical micrographs of P3HT:PCBM films at different temperatures (a1) room temperature, (a2) at 130°C after 30 min of annealing, and (a3) at 25°C after cooling from 130°C. (b1) morphology at 180°C after 30 min of annealing, (b2) morphology at 25°C after cooling from 180°C, and (b3) magnified version of b2 image.

Figure 3.7 (a) Room temperature Raman spectra (in the range of symmetric C=C stretching mode) of P3HT:PCBM films recorded after annealing them at different temperatures. (b) Variation of corresponding FWHM's of symmetric C=C stretching mode as a function of annealing temperature.

Figure 3.8 UV–Vis spectra of P3HT:PCBM films as-cast, and annealed at 130–180°C for 30min.

Figure 3.9 5 µm × 5 µm AFM images of (a) bare ITO substrate, (b) as-cast P3HT:PCBM film, (c)–(f) are after annealing at 110, 130, 150 and 180°C, respectively. (g) RMS roughness of the films as a function of annealing temperature (inset shows the magnified version of the selective area).

Figure 3.10 (a) and (b) are the SEM images of the P3HT:PCBM films annealed at 130 and180°C, respectively. (c) and (d) are the carbon X-ray counts across the lines drawn in (a) and (b) respectively.

Figure 3.11 (a–c) Schematic depiction of morphology evolution in P3HT:PCBM films as a function of temperature. Typical selective area Raman spectrum in each case is also presented.

Figure 3.12 First 5 cyclic voltammograms of electrodeposition of porphyrin on ITO substrates.
Figure 3.13 UV-Vis spectra of (a) porphyrin films deposited on ITO substrates after different number of scans and (b) porphyrin monomer in methanol.

Figure 3.14 SEM images of electrodeposited porphyrin films after (a) 5 scans and (b) 10 scans.

Figure 3.15 AFM image of porphyrin film deposited for 3 CV scans, a height profile showing formation of granular morphology.

Figure 3.16 The Raman spectra of (a) electrodeposited porphyrin film and (b) drop-casted porphyrin film.

Figure 3.17 (a) Cyclic voltammogram recorded for C_{60} solution prepared in DCM and TBAP as a supporting electrolyte. (b) UV-Vis spectra recorded for C_{60} and C_{60}^{2-} solutions. Inset shows photographs of C_{60} (violet) and C_{60}^{2-} (light brown) solutions.

Figure 3.18 (a) Typical linear sweep voltammograms (LSV) recorded using ITO as working electrode and C_{60}^{2-}+ TBAP solution after different numbers of scans. Peaks (I) and (II) correspond to C_{60}^{2-} to C_{60}^{-} and C_{60}^{-} to C_{60} oxidations, respectively, which occur at ITO surface. (b) Schematic of the proposed pathways of polymerization of C_{60}.

Figure 3.19 (a) Cyclic voltammogram recorded using electrodeposited polyfullerene film as working electrode and 0.1 M TBAP as electrolyte. (b) Typical FTIR spectrum of polyfullerene film in the wavenumber range 500 – 800 cm\(^{-1}\). Inset shows the FTIR spectrum in the range 800–1500 cm\(^{-1}\).

Figure 3.20 (a) Typical UV-Vis spectra recorded for C60 solution (i) and electrodeposited polyfullerene films on ITO after different numbers of LSV scans: (ii) 50, (iii)
100, (iv) 150, (v) 200 and (vi) 300. (b) Energy band gap of polyfullerene films as a function on numbers of LSV scans used for deposition. Inset shows a typical Tauc plot used for determination of band gap.

Figure 3.21 SEM images of bare ITO surface (a), and polyfullerene films deposited after 50 (b) and 100 (c) LSV scans.

Figure 3.22 AFM image of polyfullerene films deposited after 100 LSV scans.

Figure 3.23 Workfunction mappings of (a) ITO substrate; (b) electrodeposited polyfullerene on ITO substrates for 200 LSV scans.

Figure 3.24 (a) Work function mapping of ITO-C₆₀ interface (Blue indicates C₆₀ region, Red indicates ITO region); (b) 3D work function mapping of ITO-C₆₀ interface.

Figure 3.25 SEM images of (a) polyfullerene films deposited on ITO substrate for (a) 200 LSV scans, (b) 300 LSV scans and (c) magnified view of single polyfullerene nano whisker.

Figure 3.26 HREM micrographs of C₆₀ on ITO (300 scan) showing avg. roughness of 30nm, The C₆₀ – C₆₀ periodicity along the chain is 10Å-11Å and the interchain distance observed is around 8 Å – 9Å.

Figure 3.27 (a) Energy level diagram of porphyrin-polyfullerene bilayer solar cell, (b) UV-Vis spectra showing absorbance of porphyrin, polyfullerene, and porphyrin/polyfullerene bilayer.

Figure 3.28 J-V characteristics of (a) porphyrin/fullerene bilayer solar and (b) Porphyrin/PCBM bilayer solar cells under 5 mW/cm² white light illumination.
Figure 3.29 SEM Images of ZnO seed layer deposited on ITO substrate by using (a) 5 µl, (b) 10 µl, (c) 15 µl, and (d) 20 µl of ZnO NP solution.

Figure 3.30 SEM Images of ZnO NW grown on ITO substrate by using (a) 5 µl, (b) 10 µl, (c) 15 µl, and (d) 20 µl of ZnO NP solution as seed layers.

Figure 3.31 (a) X-ray diffraction pattern and (b) Raman spectrum of ZnO NW array grown onto ITO substrate.

Figure 3.32 (a) First 5 cyclic voltammograms of electrodeposition of porphyrin on ZnO-NW electrodes, (b) UV-Vis spectra of ZnO-NW electrode and porphyrin-modified ZnO-NW electrodes.

Figure 3.33 Energy level diagram of (a) ITO/ZnO-NW/P3HT/Au and (b) ITO/porphyrin-modified ZnO-NW/P3HT/Au hybrid bilayer solar cells.

Figure 3.34 Photoresponse of (a) short-circuit current density’s (b) open-circuit voltages under dark and white light illumination (5mW/cm²)

Figure 3.35 A plot of (a) ideality factor, saturation current obtained by fitting J-V curves vs. efficiency of the respective devices obtained experimentally; (b) R/R_{sh}, photogenerated current obtained by fitting J-V curves vs. experimentally obtained efficiency of bilayer and bulk-heterojunction solar cells.

Figure 4.1 UV-Vis spectra of the ZnO NW array sensitized with (a) PM567 and (b) N3 dyes. Inset shows the pictures of the sensitized electrode.

Figure 4.2 J-V characteristics of the dye sensitized solar cell using PM567 and N3 dye sensitized electrode in (a) I_3/I^- electrolyte and (b) Fe^{3+}/Fe^{2+} electrolyte.

Figure 4.3 UV-Vis spectra of TiO$_2$ photoanodes sensitized with RhCl, N3 and co-sensitized with RhCl & N3 dyes.

Figure 4.4 FTIR spectra of untreated and formic acid treated TiO$_2$ surface.
Figure 4.5 FTIR spectra of free RhCl dye and RhCl loaded TiO$_2$ electrode in two different regions.

Figure 4.6 Schematic representation of the binding of RhCl and N3 dyes on the formic acid treated TiO$_2$ surface. Dashed lines represent the hydrogen bonding between OH groups and N3 dye.

Figure 4.7 Typical dark and photo (measured (symbol) and fitted (solid line)) J-V characteristics of co-sensitized DSSC under dark, and AM 1.5, 1Sun condition with different dipping times in N3 dye.

Figure 4.8 (a) Typical dark and photo (measured (symbol) and fitted (solid line)) J-V characteristics of solar cells made using RhCl, N3, and both dyes (b) Typical IPCE spectra of N3 and N3+RhCl dyes

Figure 4.9 Power conversion efficiency of N3 dye-sensitized solar cell with different electrolytes.

Figure 4.10 Variation of power conversion efficiency (Normalized efficiency = $\eta(t)/\eta(0)$) of N3 dye-sensitized solar cells under illumination with time.

Figure 4.11 Cross-sectional SEM images of the free-standing PPy films polymerized at aqueous/organic interface for: (a) 2h, (b) 4h, (c) 18h, and (d) magnified cross-section of (c)

Figure 4.12 SEM and AFM images of the denser and porous surfaces of the PPy films polymerized for 18 h. (a) and (b) are respectively the SEM and AFM images of the denser surface. (c) Schematic showing the oriented polymerized pyrrole chains forming a dense layer at the aqueous/organic interface due to enhanced p–p interactions. (d) Magnified SEM image of the porous surface.
(e) Schematic showing the formation of coil-like structure away from the aqueous/organic interface that leads to the formation of porous structure.

Figure 4.13 (a) FTIR and (b) UV–Vis spectra of free-standing PPy films.

Figure 4.14 Cyclic voltammograms of free-standing PPy films and Pt/FTO in 10 mM LiI, 1 mM I₂, and 0.1 M TBAP in acetonitrile solution at 50 mV/s scan rate. The inset shows the magnified peak after background subtraction for free-standing PPy film.

Figure 4.15 Nyquist plots of DSSCs with (a) Pt/FTO, (b) free-standing PPy counter electrodes. Insets on left show the magnified version of charge transfer resistances at counter electrode interfaces and on right shows the porous behaviour of counter electrodes. (c) and (d) are the equivalent circuits employed for fitting the experimentally measured data. (e) and (f) show Bode plots of DSSCs with Pt/FTO, and free-standing PPy counter electrodes.

Figure 4.16 Schematic depiction of (a) Nernst diffusion in Pt/FTO based DSSC and (b) Nernst and pore diffusions in free-standing PPy based DSSC.

Figure 4.17 Schematic of the DSSC assembly using free-standing PPy film as counter electrode.

Figure 4.18 Measured (symbol) and fitted (solid line) current–voltage characteristics of DSSCs with Pt/FTO and freestanding PPy counter electrodes under one sun illumination.

Figure 4.19 A plot of (a) ideality factor, saturation current obtained by fitting J-V curves vs. efficiency of the respective devices obtained experimentally; (b) \(R/R_{sh} \), photogenerated current obtained by fitting J-V curves vs. experimentally obtained efficiency of dye-sensitized solar cells.
Figure 5.1 A plot of ideality factor obtained by fitting J-V curves vs. experimentally obtained efficiency of the polymer (square) and dye-sensitized solar cells (open-circle).

Figure A1 Molecular structures of (a) porphyrin (THPP), (b) fullerene, (c) P3HT, (d) PCBM materials employed in the fabrication of polymer solar cells

Figure A2 Molecular structures of (a) Bodipy, (b) RhCl, (c) N3 dyes employed in the present thesis work

Figure A3 (a) Absorbance versus concentration of N3, and RhCl dye in 0.1 M KOH aqueous solution and (b) UV-Visible spectra of desorbed (i) co-sensitized electrode and (ii) N3 dye electrode of area 1 cm2 in 3ml of 0.1 M KOH aqueous solution.