Table of Contents

1. INTRODUCTION
 1.1 Energy crisis .. 1
 1.2 Solar Photovoltaics: A key solution to energy crisis 2
 1.3 Towards sustainable thin film solar cell 3
 1.4 Need to search for newer materials for absorber layer .. 6
 1.5 Direct Liquid coating techniques 9

2. Literature Review
 2.1 Crystal Structure 13
 2.2 Cu$_2$SnS$_3$ thin films 14
 2.2.1 Physical Methods 15
 2.2.2 Chemical Methods 15
 2.2.3 Physico-chemical Methods 18
 2.3 CTS in monocrystalline, polycrystalline and nanocrystalline solid forms 20
 2.4 Photovoltaic properties 25

3. Experimental
 3.1 Introduction .. 33
 3.2 Deposition of films 33
 3.2.1 Dip-coating 33
 3.3 Structural characterization 36
 3.3.1 X-ray Diffraction 36
 3.3.2 Raman spectroscopy 39
 3.4 Compositionel characterization 42
 3.4.1 Energy Dispersive X-ray Spectroscopy (EDS) 42
 3.4.2 X-ray Photoelectron Spectroscopy 44
 3.5 Morphology and surface topography 48
3.5.1 Electron Microscopy

3.5.1a Scanning electron microscopy

3.5.1b Transmission electron microscopy

3.5.2 Atomic Force Microscopy

3.6 Optical Characterization

3.6.1 UV-Visible-NIR spectroscopy

3.7 Chemical Mechanism

3.7.1 Thermal Analysis

3.7.1a Thermogravimetric analysis

3.7.1b Differential Scanning Calorimetry

3.7.2 Infrared Spectroscopy

3.8 Electrical measurements

3.8.1 Electrical conductivity measurement

3.8.2 Thermoelectric power

3.8.3 I-V characteristics of solar cells

4. Preparation and Characterization of Cu2SnS3 Films

4.1 Film deposition

4.2 Studies on metal-thiourea precursor complex

4.2.1 Thermal decomposition

4.2.2 Metal ions – Thiourea interaction

4.3 Structure and Composition

4.3.1 X-ray Diffraction

4.3.2 X-ray Photoelectron Spectroscopy

4.4 Effect of thickness

4.4.1 Structure and composition

4.4.1a X-ray Diffraction

4.4.1b Raman Spectroscopy
5. Optical and Electrical properties of Cu$_2$SnS$_3$ Films

5.1 Optical properties of Cu$_2$SnS$_3$ thin films

5.1.1 Optical properties of Cu$_2$SnS$_3$ films

5.1.2 Refractive index

5.1.3 Dielectric constants

5.1.4 Dispersion energy parameters

5.2 Carrier transport in Cu$_2$SnS$_3$ films using thermoelectric and conductivity measurements

5.2.1 Preliminary studies in temperature range of 5-290 K

5.2.2 Detailed measurements and analysis for CTS thin films

5.2.2a Variation of conductivity with temperature

5.2.2b Variation of thermoelectric power (TEP) with temperature

5.2.2c Variation of carrier concentration with temperature

5.2.2d Variation of hole mobility with temperature

5.2.3 Discussion

5.2.3a Recapitulation of results and preliminary inferences

5.2.3b Temperature dependence of mobility

5.2.4 Qualitative model for carrier transport

5.2.5 Anomalous mobility of annealed films under illumination
6. Preparation and Characterization of Cu₂SnS₃ Powder and Nanoparticles

6.1 Preparation and characterization of powder by solid state reaction

6.1.1 Preparation

6.1.2 Characterization

6.1.2.1 Composition, Structure and Morphology

6.1.2.1a X-ray Diffraction

6.1.2.1b Raman spectroscopy

6.1.2.1c X-ray Photoelectron Spectroscopy and ICP-Optical Emission Spectroscopy

6.1.2.1d Scanning Electron Microscopy

6.1.2.2 Optical Properties

6.1.2.3 Electrical Properties

6.1.2.4 Analysis of Precursor

6.1.2.4a Thermal degradation of precursor

6.1.2.4b Metal ion-Thiourea bonding interaction

6.2 Microwave-assisted rapid synthesis of nanoparticles

6.2.1 Synthesis of CTS nanoparticles

6.2.2 Characterization

6.2.2.1 Structure and composition

6.2.2.1a X-ray Diffraction

6.2.2.1b Raman Spectroscopy

6.2.2.1c X-ray photoelectron spectroscopy

6.2.2.2 Morphology

6.2.2.3 Optical properties

6.2.2.4 Electrical properties

7. Photovoltaic properties of Cu₂SnS₃

7.1 One dimensional numerical modeling of CTS based heterojunction

7.1.1 Transport equations
7.1.2 Numerical solution of the equations
7.1.3 Conventions and modeling inputs in AMPS
7.1.2 Optimization of device parameters
 7.1.2.1 Absorber layer thickness
 7.1.2.2 Absorber layer doping concentration
 7.1.2.3 Absorber layer electron mobility
 7.1.2.4 Back contact barrier height (PHiBL)
 7.1.2.5 Final optimized device
7.2 Low temperature current transport in In/p-Cu₂SnS₃ Schottky junction
7.3 Fabrication of CTS thin film solar cell via solution processing
7.4 Fabrication of CTS nanoparticles based solar cell

8. Summary and future scope
 8.1 Summary
 8.2 Future scope

Annexure – List of Publications