1.1 Introduction
1.2 Microwaves: Properties and applications
1.3 Techniques for microwave measurements
 1.3.1 Transmission/Reflection techniques
 1.3.2 Impedance bridge methods
 1.3.3 Cavity resonance technique
 1.3.4 Dielectric resonance techniques
 1.3.5 Slotted line and double minima method
 1.3.6 Free space methods
 1.3.7 Overlay technique
1.4 Microwave methods for Agricultural biogranular material
 1.4.1 Methods of dielectric properties and moisture content measurement of the seeds
 1.4.1.1 Non radio frequency techniques
 1.4.1.2 RF/ Microwave techniques
1.5 Microwave transmitting structures: A Brief Introduction
 1.5.1 Transmission and Reflection Parameters
 1.5.1.1 Rectangular waveguide
 1.5.1.2 TE waves solution
 1.5.1.3 TM waves solution
 1.5.2 Transmission lines for Planar MIC
 1.5.2.1 Microstripline
 1.5.2.2 Synthesis formulae (Z_0 and ε_r given)
 1.5.2.3 Analysis formulae (w/h and ε_r given)
 1.5.2.4 Effective dielectric constant of Microstripline
1.6 Antenna
1.6.1 Microstrip antenna
1.6.2 Equilateral Triangular Microstrip patch antenna
 1.6.2.1 Analysis of Equilateral Triangular Microstrip patch antenna
 1.6.2.2 Resonant frequency
 1.6.2.3 Radiation fields
1.6.3. Horn antenna
 1.6.3.1 Radiation pattern
 1.6.3.2 Directivity and gain
1.7 Fabrication of the Microstrip components
 1.7.1 Thick film deposition Technique
1.8 Microstripline components with overlay: A brief survey
1.9 Aim of the work
REFERENCES

CHAPTER-II
EXPERIMENTAL METHODS USED 61-91

2.1 Introduction:
2.2 Description of the seeds used in this study
 2.2.1 Soybean (Glycine Max)
 2.2.2 Sunflower (Helianthus Annuus)
 2.2.3 Groundnut (Arachis Hypogaea)
2.3 Sample preparation and characteristics
2.4 Designing of Equilateral Triangular Microstrip patch antenna
2.5 Fabrication of microstripline components using thick film process
 2.5.1 Preparation of stencil
 2.5.2 Pattern delineation
 2.5.3 Drying and firing of thick film circuits
2.6 Microwave setup for circuit characterization
2.7. Description of microstrip components used for study of the seeds
2.7.1 Microstrip line
2.7.2 Equilateral Triangular Microstrip patch antenna

2.8 Microwave transmission and reflection measurement using reflectometer technique

2.9 Measurement of the real and imaginary part of permittivity using VSWR technique

2.10 Smith chart

2.11 Characterization of the seeds
 2.11.1 Infrared Spectroscopy
 2.11.2 Scanning Electron Microscope (SEM)
 2.11.3 Microwave Dielectric Characterization using overlay technique
 2.11.3.1 Calculation of phase angle
 2.11.3.2 Permittivity of the seeds using equilateral triangular microstrip patch antenna
 2.11.3.3 Microwave conductivity of the seeds
 2.11.3.4 Penetration depth

2.12 Moisture prediction using permittivity data

REFERENCES

CHAPTER-III
Response of Ag thick film microstripline to overlay of the seed

3.1 Introduction:

3.2 Ag thick film microstripline
 3.2.1 Response of Ag thick film microstripline without overlay
 3.2.2 Response of Ag thick film microstripline with the seed of soybean sunflower and groundnut overlay.
 3.2.2.1 Effect of soybean (Glycine Max) seed overlay on thick film microstripline
 3.2.2.2 Effect of sunflower (Helianthus Annuus) seed overlay on thick film microstripline
3.2.2.3 Effect of Groundnut (Arachis Hypogaea) seed overlay on thick film microstripline

3.2.2.4 The perturbation in transmission and reflection due to seed overlay with error bars.

3.3 The real part and imaginary part of permittivity of the seeds using Ag thick film microstripline

3.4 Moisture dependent microwave conductivity of the seeds

3.5 Moisture prediction using complex permittivity data

3.6 Important results

REFERENCES

CHAPTER-IV

Moisture laden seed overlay on Equilateral Triangular Microstrip Patch Antenna: Results 129-160

4.1 Introduction:

4.2 Ag thick film equilateral triangular microstrip patch antenna
 4.2.1 Response of Ag thick film equilateral triangular microstrip patch antenna without overlay
 4.2.2 Response of Ag thick film equilateral triangular microstrip patch antenna with seed overlay
 4.2.2.1 Soybean seed overlay effect on Ag thick film equilateral triangular microstrip patch antenna
 4.2.2.2 Sunflower seed overlay effect on Ag thick film equilateral triangular microstrip patch antenna
 4.2.2.3 Groundnut seed overlay effect on Ag thick film equilateral triangular microstrip patch antenna

4.3 The real part and imaginary part of permittivity of the seeds using Ag thick film equilateral triangular microstrip patch antenna
 4.3.1 Sample calculation of real and imaginary part of permittivity of soybean seed:

4.4 Moisture dependent microwave conductivity of the seeds
4.5 Penetration depth

4.6 Moisture prediction of seeds using Ag thick film equilateral triangular microstrip patch antenna
 4.6.1 Moisture prediction using soybean seed overlay
 4.6.2 Moisture prediction using sunflower seed overlay
 4.6.3 Moisture prediction using groundnut seed overlay

4.7 Radiation pattern of Ag thick film equilateral triangular microstrip patch antenna
 4.7.1 E plane and H plane radiation pattern of Ag thick film equilateral triangular microstrip patch antenna without overlay
 4.7.2 E plane and H plane radiation pattern of Ag thick film equilateral triangular microstrip patch antenna with overlay
 4.7.2.1 E plane and H plane radiation pattern of Ag thick film equilateral triangular microstrip patch antenna due to soybean overlay
 4.7.2.2 E plane and H plane radiation pattern of Ag thick film equilateral triangular microstrip patch antenna due to sunflower overlay
 4.7.2.3 E plane and H plane radiation pattern of Ag thick film equilateral triangular microstrip patch antenna due to groundnut overlay

4.8 Important results

REFERENCES

CHAPTER-V

Studies on Moisture Laden Oilseeds Using Waveguide Reflectometer and VSWR Method

5.1 Introduction

5.2 The reflectance and transmittance of waveguide reflectometer due to perturbation of the seeds
 5.2.1 Perturbation due to Soybean (Glycine Max) seeds
5.2.2 Perturbation due to Sunflower (Helianthus Annuus) seeds
5.2.3 Perturbation due to Groundnut (Arachis Hypogaea) seeds
5.2.4 Permittivity of the seeds from waveguide reflectometer measurement
5.2.5 Moisture dependent microwave conductivity of seeds
5.3 Permittivity of the seeds measured from VSWR slotted section method
 5.3.1 The real and imaginary part of permittivity of seeds
 5.3.2 Impedance of seeds measured from VSWR slotted section method
5.4 Moisture prediction using complex permittivity data
 5.4.1 Moisture prediction from waveguide reflectometer method
 5.4.2 Moisture prediction from VSWR slotted section method
5.5 DC resistivity and conductivity of seeds
5.6 AC electrical permittivity of seeds
5.7 Important results
REFERENCES

Chapter VI
Discussion of the Results of the Studies of Soybean, Sunflower and Groundnut using Microstrip Components and Waveguide Techniques, Summary and Conclusions 191-222

6.1 Introduction
6.2 Microstrip components without overlay
6.3 Model of the moisture laden seeds
6.4 Effect of seed overlay on the thick film microstrip components
 6.4.1 Seed overlay effect on microstripline
 6.4.2 Seed overlay effect on equilateral triangular microstrip patch antenna
6.5 Prediction of moisture content
 6.5.1 Prediction of moisture content using microstripline
6.5.2 Prediction of moisture content using waveguide technique i.e. reflectometer and VSWR technique
6.5.3 Prediction of moisture content using equilateral triangular microstrip patch antenna
6.5.4 Cole-Cole plots
6.5.5 Comparison of predicted moisture content from the various methods
6.6 Error analysis
6.7 Summary
6.8 Conclusions
6.9 Scope of future work
REFERENCES
 ♦ List of research publications 223-225