Table of Contents

List of Figures (ix)
List of Tables (xi)
List of Publications (xiii)

CHAPTER 1: Introduction

1.1 Numerical Analysis 1
1.2 Historical Background 2
1.3 General Introduction 4
 1.3.1 Regular Perturbation 7
 1.3.2 Singular Perturbation 7
1.4 Definitions and Small Concept 16
 1.4.1 Initial value Problems 16
 1.4.2 Boundary Value Problems 17
 1.4.3 Boundary layer theory 17
 1.4.4 Order of Approximation 18
1.5 Spline and its Types 18
 1.5.1 Linear Spline 19
 1.5.2 Quadratic Spline 19
 1.5.3 Cubic spline 20
 1.5.4 B-spline 21
1.6 Order Notation 22
1.7 Methods for Solving Singular Perturbation Problems 23
 1.7.1 Method of Asymptotic Expansion 23
 1.7.2 Method of Matched Asymptotic Expansion 24
 1.7.3 Method of Multiple-Scale Analysis 27
1.8 Some Worked Examples Arising from Physical Problems 27
1.8.1 Mechanical and Electrical System 28
1.8.2 Celestial Mechanics 31
1.8.3 Fluid Mechanics 32
1.8.4 Chemical and Biochemical Reaction 33
1.9 Organization of Thesis 34

CHAPTER 2: Various Numerical Methods for Singularly Perturbed Boundary Value Problems
2.1 Introduction 37
2.2 Linear Singular Perturbation Boundary Value Problems 38
2.3 Non-Linear Singular Perturbation Boundary Value Problems 49
2.4 Parameterized Singular Perturbation Boundary Value Problems 57
2.5 Delay Differential Equations 60
2.6 Integral Equations 66
2.7 Conclusion 69

CHAPTER 3: Singularly Perturbed Boundary Value Problems via Liouville-Green Transform
3.1 Introduction 70
3.2 Liouville-Green Transforms for Left End Boundary Layer 71
3.3 Application for Left End Boundary Layer 74
3.4 Numerical Examples 75
3.5 Liouville-Green Transforms for Right End Boundary Layer 80
3.6 Application for Right End Boundary Layer 83
3.7 Numerical Examples 84
3.8 Conclusion 94

CHAPTER 4: A Special Class of Singular Singularly Perturbed Problems via B-Spline Method
4.1 Introduction 95
4.2 Description of the Method 96
4.3 Convergence Analysis 102