INTRODUCTION

Proportion of males and females is one of the most important demographic characteristics of a society. Its significance stems from the fact that sex composition affects the incidence of birth, death and marriage in a community. It appears as a differential in the migrant status, occupational distribution and virtually all other distributions of population characteristics. At the census of 1991 some 929 females per 1000 males were enumerated in India. The share of females in the population of the country has been changing in time. There were 927 females per thousand males at the dawn of this century. When 990 females per 1000 males were counted in India. Similar trends have been evidenced in Madhya Pradesh also. Such temporal trends of sex composition may have interesting implications in the socio-economic life of our country and the causes of their peculiarities need to be investigated.

The spatial patterns of sex composition in India are very peculiar. The proportion of females is very low in the north-western regions of the country. The sex ratios show a consistently increasing trend towards southern and eastern regions of the country. Madhya Pradesh comprises illustrative typical patterns of gender inequalities. In its northern districts the ratio ranges in the vicinity of 832 females per thousand males. The ratios exhibit increasing patterns towards the areas of Chhattisgarh and other adjoining districts in the south-eastern parts of the State, where share of females in the population is more than 1000. The
present region lies in that part of the Madhya Pradesh where female ratio are higher than other parts of the Country.

Some authors have the attention of scholars towards these peculiarities. Among them Gosal (1961), Chandna (1980), Dube (1977), Visaria (1967) and other have tried to explain the genesis of these spatial dimensions in India and Madhya Pradesh. These studies have, however, been the analysis of census data and are dependent on conjectural possibilities. An effort is made in this thesis to identify the causative factors which have led to the evolution of female excess in this region.

The study region i.e. Maikal plateau is located in the south central part of Madhya Pradesh. It is located between 22°12' N to 23°22' N latitude and from 80°18' to 81°51' E longitude.

OBJECTIVES OF THE STUDY

The principal objective of the present study is the investigation of the factors which have been responsible for the evolution of a male deficient population in this region.

It has been concluded by demographers that the fundamental factors, which determine the gender composition of a population include sex ratio at birth, sex differential mortality and sex selective migration. Sex ratio at birth plays a fundamental role in creation of a male or female dominant population. The differential incidence of deaths among the two sexes in the subsequent ages has been shown to exert further effects on gender composition. Since, males are known to be more affected by
migrating forces, migration also modifies the sex composition. An effort has been made in this thesis to analyse the pattern of birth, death, and migration in the Maikal region in order to evaluate their relative roles in the evolution a distinct gender pattern in this area of the country decided to divide the region into type regions and than take one village from each type. The demographic phenomena is not expected to vary at short distances and hence seven villages from the seven type areas of the Maikal Plateau was likely to generate information which may be representative for the whole region. It is likely that the number of villages may not be sufficient but the with available man power resources and time it was indeed different to expand the work over more villages. This researcher is however confident that the data which have been formulated do suggest the dominant trends.

**THE SOURCE OF DATA**

Following study is based on the data provided by Census of India and on data generated by this researcher by conducting an intensive field work. The the data for general demographic features and some summary data on vital rates and migration have been taken from the Census reports.

Detailed data on vital rates and mobility of population have been generated by conductive field data of seven villages of the region. The region contains more than two thousand villages (2180). It was not possible to survey many more villages for the kind of detailed data that was required for this study. It was, therefore from each villages about 60.0 per
cent house holds were selected by making use of stratified sample taking caste as the strata.

Data on such basic aspects of the demography of these household were collected as population, caste, religion, education, working status. Fertility history of all the mothers in these families were recorded. Besides number of births and deaths during the past one year were also collected. Migrant status of the persons in different families were noted. In order to identity the biological determinants of the male-female status blood groups of some 150 selected couples were also investigated.

The data of sample villages collected through schedules have been tabulated and analysed. These data have helped in suggesting important features of the determinants of gender inequalities and their differentials. The results of the data have been interpreted and explained.

Data on other aspects are either appended in the district census handbooks or they have been collected from different government departments. Old data are available in the State Gazetteers and in different volumes of the Gazetteer of India.

THE UNIT OF ANALYSIS

The base unit of mapping of general demographic materials in this study requires the need for analysis at village level because they consider the village as a fundamental unit of social organisation material, culture, and demography and also mapping of data at village level brings out the real areal pattern conveying the ultimate details of the phenomena
mapped: (Krishna, 1968), Chandna (1968) and Mehta (1970). Earlier Zelinsky (1966) indicated the utility of a local or village unit, the boundaries of which usually stagnate for centuries to keep the demographic data at comparable levels for different periods of time. Incidentally, it may be mentioned here that data of a higher administrative level are rarely comparable for different points of time on account of their insatiable boundaries during a long period.

While selecting a base unit for population analysis, a researcher has two fundamental considerations: (i) The number of such units should be large enough to reveal the areal pattern effectively and (ii) the periodical comparability of data for the remaining units should be unchanged during the period under review, the second objective is automatically achieved. But if the boundaries have undergone frequent change, the data will have to be adjusted for the present units.

It is a fact that analysis at village level reveals the real areal pattern and also that the population data at village level are comparable for different periods on account of the fact that village boundaries usually remain unchanged for centuries.

The mapping of 2180 village has been done to find out sufficient spatial contrasts and the comparability of their data for different years by compiling the village data. Further more, analysis at village level would remove the misleading adducted of hamlets.
METHODOLOGY

The study of spatial differentiation and spatial interaction of different elements of population is based on the choreographic maps which have been prepared by making use of village wise statistics (Zelinsky, 1966, p. 5). In fact, the entire study will be in the form of an interpretation which will be emerged on the maps.

The first step was the compilation of village-wise population data. They were collected from Primary Census Abstract, of Mandla District for 1991. Few data were also collected from 1981 district Census Handbook of Mandla. Thus, the village data obtained were calculated in per cent.

The next step after the compilation of data (village-wise) and their computation into rates and ratios which were subsequently mapped with the help of choropleth method, which bring out areal contrasts more effectively. A careful selection of the class intervals for these maps were made with a view that 'size sorting' of distribution data is most effectively accomplished with the intervals, which are considered as the mesh sizes in cartography with the chosen values forming the screen wire (Mackay, 1955, pp. 71-81).

In view of a large number of base units, the selection of class interval was, not possible from inspection of data. Frequency graphs were drawn, and median and average clause have been calculated for all individual items of the study. The number of slabs were then selected by considering the total range of data, the significant breaks in their
distribution, and their distribution with reference to the median and the average values. Usually the number of categories does not exceed six except one map so that the human eye may easily accommodate different shaded distributions (Robinson, 1966, p. 231). In order to obtain the comparability of broad pattern the class intervals have been kept similar in mapping the same element for different periods, almost all the maps have been prepared in black and white choropleths.

The spatial pattern coming out from the maps have been systematically interpreted. An extensive field observation undertaken to substantiate spatial correlation.

The patterns of decennial changes for the period 1971-91 have been analysed in greater details, while population growth and changes in sex ratio was studied for the period 1901-1991. Thus, the study not only includes practically all the aspects of population geography of the region, but it also contains the changes in the demographic character of the region, which would help in obtaining a better understanding of the demographic personality of the region.

The data of sample villages have been summarised and tabulated for the indepth study of vital rates and migration which govern the gender inequalities. The data have been converted into rates and ratio for finding out dominant trends. Standard techniques have been tried wherever required.
THE SCHEME OF THE STUDY

The following study of the sex gender inequalities in the Maikal plateau has been arranged into seven chapters, preceded by an introduction and followed by conclusions. The first chapter deals with the general outline of the regional setting of the region where account of location, physiography, climate, soils and socio-economic situation of the region have been given. The second chapter includes the population characteristic which include age structure and level of education. The third chapter is on general pattern of sex ratios. The fourth and the fifth chapters discuss vital components of gender composition. The sixth chapter is concerned with the mobility study. The last chapter viz. seventh chapter is on gender imbalances and socio-economic components. In these chapters, beside discussing the general features of the concerned aspects the areal, rural-urban, concerned caste religion and working status differentials and differentials by blood groups of the people have also been highlighted. Throughout effort has been concentrated to highlight those aspects of the demographic making of the region which have led of the evolution of a distinct on gender composition of population in this region.