LIST OF FIGURES

Figure 1.1 Location map of the study area-Kutch region. 15
Figure 1.2 Organization chart for thesis layout. 17
Figure 2.1 Pangaea: The earth 200 million ago. 19
Figure 2.2 Developments of today’s continents from one supercontinent. 19
Figure 2.3 Tectonic plates of the world. 20
Figure 2.4 Significant earthquakes on African Plate. 22
Figure 2.5 Significant earthquakes on Eurasian plate. 23
Figure 2.6 Significant earthquakes on Indo-Australia plate. 26
Figure 2.7 Significant earthquakes on Pacific plate. 30
Figure 2.8 Significant earthquakes on North American plate. 34
Figure 2.9 Significant earthquakes on South American plate. 35
Figure 2.10 Plate tectonic movement of India northwards into the Eurasian Plate. 45
Figure 2.11 Major Cratons of India. 46
Figure 2.12 Map of seismic zonation of India. 47
Figure 2.13 Geological units of India. (not to scale). 49
Figure 2.14 Seismo-tectonic map of India. 49
Figure 2.15 Fault map of India. 50
Figure 2.16 Seismicity of the Indian sub-continent, 1964-2002 (M >5.0, Source:GSI) 56
Figure 2.17 Historic Seismicity in and around Indian sub-continent. 57
Figure 2.18 Significant earthquakes of India. 58
Figure 3.1 Geomorphic map of Kutch district. 73
Figure 3.2 Seismotectonics of Kutch region (Compiled from Biswas, 1987). 81
Figure 4.1 Epicentral locations of seismic seismic events of (Mw ≥ 3.5) for the present study. 88
Figure 4.2 Three-component seismogram recorded at Bhuj for the seismic event of Jan 28,2001 (Mw 5.5) 90
Figure 4.3 Displacement spectra for some seismic event of recorded at station Bhuj 91
Figure 4.4 Relation between Moment magnitude Mw and Seismic moment M0 101
Figure 4.5 Relation between Moment magnitude Mw and Corner frequency fc. 102
Figure 4.6 Relation between M_0 and corner frequency f_c. 104
Figure 4.7 Relation between M_0 and rupture parameters. 105
Figure 4.8 Relation between M_0 and Epicentral distance. 106
Figure 4.9 Relation between M_0 and Hypocentral depth. 106
Figure 4.10 (a) Relation between Radiated Seismic energy and moment magnitude. 110
Figure 4.10 (b) Relation between Radiated Seismic energy and seismic moment. 111
Figure 4.11 Relation of Scaled Energy E_S with M_0 and M_w. 113
Figure 4.12 Distribution of Stress drop over Kutch region. 115
Figure 4.13 Contours for stress drop distributed over Kutch region. 115
Figure 4.14 (a) to (e) Relation between Stress Drop and other parameters. 118
Figure 4.15 Variation in Zuniga parameter with time. 120
Figure 4.16 Relation of Zuniga parameter with M_w. 121
Figure 5.1 Locations of Jan26,2001 Bhuj earthquake and meteorological stations in Kutch 123
Figure 5.2 Workflow for the analysis of thermal anomaly on daily basis. 127
Figure 5.3 Flow chart for study of actual maximum temperatures during earthquake. 128
Figure 5.4 Flow chart for study of departures in maximum temperature during earthquake. 129
Figure 5.5 Workflow for the analysis of thermal anomaly on seasonal basis. 131
Figure 5.6 Temperature Curves for the seismic event of Jun 17, 2001 for Bhuj. 132
Figure 5.7 Temperature Curves for the seismic event of Jan 9, 2002 for Bhuj. 133
Figure 5.8 Temperature Curves for the seismic event of Jan 28, 2002 for Bhuj. 133
Figure 5.9 Temperature Curves for the seismic event of May 9, 2002 for Bhuj. 134
Figure 5.10 Temperature Curves for the seismic event of Dec 11, 2005 for Bhuj. 135
Figure 5.11 Temperature Curves for the seismic event of Jan 14, 2006 for Bhuj. 135
Figure 5.12 Temperature Curves for the seismic event of Mar 10, 2006 for Bhuj. 136
Figure 5.13 Temperature Curves for the seismic event of May 13, 2007 for Bhuj. 136
Figure 5.14 Temperature Curves for the seismic event of Oct 29, 2011 for Bhuj. 137
Figure 5.15 Temperature curves for daily maximum temperature (actual and departures) for Bhuj for all seismic events of ($M_l \geq 4.0$) occurred over Kutch region during Jan-2001 to Dec-2012. 138
Figure 5.16 Temperature curves for the seismic event of Mar 14, 2001 for Naliya. 145
Figure 5.17 Temperature curves for the seismic event of Apr 8, 2001 for Naliya. 146
Figure 5.18 Temperature curves for the seismic event of Jun 17, 2001 for Naliya.

Figure 5.19 Temperature curves for the seismic event of Jan 28, 2002 for Naliya.

Figure 5.20 Temperature curves for the seismic event of May 9, 2002 for Naliya.

Figure 5.21 Temperature curves for the seismic event of Dec 20, 2004 for Naliya.

Figure 5.22 Temperature curves for the seismic event of Feb 12, 2006 for Naliya.

Figure 5.23 Temperature curves for the seismic event of Mar 7, 2006 for Naliya.

Figure 5.24 Temperature curves for the seismic event of Oct 29, 2011 for Naliya.

Figure 5.25 Temperature curves for daily maximum temperature (actual and departures) for Naliya for all seismic events of (M_l ≥ 4.0) occurred over Kutch region during Jan-2001 to Dec-2012.

Figure 5.26 Anomalous changes in maximum temperature during summer for New Kandla

Figure 5.27 Anomalous changes in maximum temperature during winter for New Kandla

Figure 5.28 Temperature curves for daily maximum temperature (actual and departures) for New Kandla for all seismic events of (M_l ≥ 4.0) occurred over Kutch region during Jan-2001 to Dec-2012.

Figure 5.29 Plots for thermal anomaly for winter season for Bhuj.

Figure 5.30 Plots for thermal anomaly for summer season for Bhuj.

Figure 5.31 Plots for thermal anomaly for monsoon season for Bhuj.

Figure 5.32 Plots for thermal anomaly for post-monsoon season for Bhuj.

Figure 5.33 Plots for thermal anomaly for winter season for Naliya.

Figure 5.34 Plots for thermal anomaly for summer season for Naliya.

Figure 5.35 Plots for thermal anomaly for monsoon season for Naliya.

Figure 5.36 Plots for thermal anomaly for post-monsoon season for Naliya.

Figure 5.37 Plots for thermal anomaly for winter season for New Kandla.

Figure 5.38 Plots for thermal anomaly for summer season for New Kandla.

Figure 5.39 Plots for thermal anomaly for monsoon season for New Kandla.

Figure 5.40 Plots for thermal anomaly for post-monsoon season for New Kandla.

Figure 5.41 Normal pattern of atmospheric pressure during a day for any inland station over tropics.

Figure 5.42 Flow chart for analysis of atmospheric pressure changes during the earthquake events.
Figure 5.43 Pressure curves for atmospheric pressure changes during earthquake event for Bhuj.

Figure 5.44 Pressure curves for atmospheric pressure changes during earthquake event for Naliya.

Figure 5.45 Hydroseismicity model.

Figure 5.46 Distribution of aftershocks and rainfall from 2001 to 2010 over Kutch region.

Figure 5.47 Rainfall Departures for the period from 1991 to 2010 for Bhuj.

Figure 5.48 Rainfall Departures for the period from 1991 to 2010 for Naliya.

Figure 5.49 Rainfall Departures for the period from 1991 to 2010 for New Kandla.

Figure 6.1 Seismotectonics and epicentral locations of earthquakes under the present study.

Figure 6.2 Zone wise frequency-magnitude distributions for b-value estimation.

Figure 6.3 Probability curves for Kutch zone.

Figure 6.4 Probability curves for Saurashtra zone.

Figure 6.5 Probability curves for Gujarat mainland zone.

Figure 6.6 Spatial distributions of earthquakes ($M \geq 2.0$) over Gujarat region.

Figure 6.7 Temporal distributions of earthquakes ($M \geq 2.0$) over Gujarat region.

Figure 6.8 Specio-temporal clusters of earthquakes over Gujarat region.

Figure 6.9 G-R frequency magnitude distributions for 2001 Bhuj aftershock sequence.

Figure 6.10 Omori’s law showing decay of 2001 Bhuj aftershock sequence.