REFERENCES
REFERENCES

Anand IJ, Reddy WR and Rawat DS (1985) Inheritance of seed colour in mustard. Indian J Genet 45; 34-37

Brennicke A and Hemleben V (1983) Sequence analysis of the cloned Cucumis melo highly repetitive DNA. Z Naturforsch 38: 1062-1065

Bureau TE and Wessler SR (1994) Stowaway: A new family of inverted repeated elements associated with the genes of both monocotyledonous and dicotyledonous plants. The Plant Cell 6: 907-916

Camarago LEA, Williams PH and Osborn TC (1995) Mapping of quantitative trait loci controlling resistance of *Brassica oleracea* to *Xanthomonas campestris pv campestris* in the field and greenhouse. Phytopathology 85: 1296-1300

Capesius I (1983) Sequence of a cryptic satellite DNA from the plant *Sinapis alba* Biochem Biophys Acta 739: 276-280

Chyi YS, Hoeneke ME and Sernyk JL (1992) A genetic linkage map of restriction fragment length polymorphism loci for *Brassica rapa* (syn *campestris*). Genome 35: 746-757

Clemens S and Kunst L (1997) Isolation of a *Brassica napus* cDNA (Accession No AF009563) encoding 3-ketoacyl-CoA synthase, a condensing enzyme involved in the biosynthesis of very long chain fatty acids in seeds (PGR97-125). Plant Physiol 115: 313

Daun JK and DeClercq DR (1988) Quality of yellow and dark seeds in *Brassica campestris* canola varieties Candle and Tobin. JAOCs 65: 122-126

119

Feinberg AP and Vogelstein B (1983) A technique for radio labelling DNA restriction
endonuclease fragments to high specific activity. Anal Biochem 132: 6-13

Ferreira ME, Williams PH and Osborn TC (1994) RFLP mapping of *Brassica napus* using doubled haploid lines. Theor Appl Genet 89: 615-621

of a tandemly repeated DNA sequence in the family Brassicaceae. J Mol Evol 25: 318-323

Harbinder S and Lakshmikumaran M (1990) A repetitive sequence from Diplotaxis erucoides is highly homologous to that of Brassica campestris and B. oleracea. Plant Mol Biol 15: 155-156

Henderson CAP and Pauls KP (1992) The use of haploidy to develop plants that express several recessive traits using light-seeded canola (Brassica napus) as an example. Theor Appl Genet 83: 476-479

123

Jin YK and Bennetzen JL (1989) Structure and coding properties of Bs1, a maize retrovirus-like transposon. Proc Natl Acad Sci USA 86: 6235-6239

Jönsson R (1977) Breeding for improved oil and meal quality in rape (Brassica napus L) and turnip rape (Brassica campestris L). Hereditas 87: 205-218

species. Plant Mol Biol 27: 853-862

126

Lakshmikumaran M and Ranade SA (1990) Isolation and characterization of a highly repetitive DNA of *Brassica campestris*. Plant Mol Biol 14; 447-448

Landry BS, Hubert N, Crete R, Chiang MS, Lincoln SE and Etoh T (1992) A genetic map for *Brassica oleracea* based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of *Plasmodiophora brassicae* (Woronin). Genome 35; 409-420

Lanner C, Bryngelsson T and Gustafsson M (1997) Relationships of wild *Brassica* species with chromosome number 2n=18, based on RFLP studies. Genome 40: 302-308

Lassner M W, Lardizabal K and Metz J G (1996) A Jojoba B-ketoacyl-CoA Synthase cDNA complements the Canola fatty acid elongation mutation in transgenic plants. The Plant Cell 8; 281-292

Leclerq RF and Siegel A (1987) Characterization of repetitive elements in several *Cucurbita* species. Plant Mol Biol 8; 497-507

Ludwig SR, Habera LF, Dellaporta SL and Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production encodes a protein similar to transcriptional activators and contain the myc-homology region. Proc Natl Acad Sci USA 86: 7092-7096

Maluszynska J and Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. The Plant J 1:159-166

McGrath JM and Quiros CF (1991) Inheritance of isozyme and RFLP markers in *Brassica campestris* and comparison with *B.oleracea*. Theor Appl genet 82; 668-673

Millar A A and Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. The Plant J 12: 121-123

Mohammed A, Sikka SM and Aziz MA (1942) Inheritance of seed colour in some oleiferous *Brassicae*. Ind J Genet Plant Breed 2: 112-127

Mohan M, Nair S, Bentur JS, Prasada Rao U and Bennett J (1994) RFLP and RAPD mapping of the rice *Gm2* gene that confers resistance to biotype 1 of gall midge (*Orseolia oryzae*). Theor Appl Genet 87: 782-788

Nair S, Prasada Rao U, Bennett J and Mohan M (1995b) DNA markers tightly linked to a gall midge resistance gene ($Gm2$) are potentially useful for marker-aided selection in rice breeding. Theor Appl Genet 91: 68-73

Narain A and Prakash S (1972) Investigation on the artificial synthesis of amphidiploids of Brassica tournefortii Gouan with the other elementary species of Brassica l. Genetica 43: 90-97

Nowak R (1994) Mining treasures from 'Junk DNA'. Science 263: 608-610

Rohlf FJ (1989) NTSYS-pc Numerical taxonomy and multivariate analysis system; version 1.50; Exeter pubi NY

Sakowicz T (1992) Species-specific Eco RI repetitive elements of at least 16 kb in length are present in *Lupinus luteus*. Theor Appl Genet 85: 303-308

Schmidt T and Heslop-Harrison JS (1996) High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species *Beta*
procumbens. Plant Mol Biol 30: 1099-1114

Sibson D, Hughes S, Bryant J and Fitchett P (1985) Sequence comparison of members of a tandemly repeated sequence family from the genome of Brassica napus. 73: In: Abstr. First Intl congr PMB; Galan GA (ed) Univ Georgia, Centre for continuing Education. Athens

Song KM, Obsorn TC and Williams PH (1988b) Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLPs). 2. Preliminary analysis of sub-species within B. rapa (syn campestris) and B. oleracea. Theor Appl Genet 76: 593-600

Teutonico RA and Osborn TC (1994) Mapping of RFLP and quantitative trait loci in *Brassica rapa* and comparison to the linkage maps of *B. Napus, B.oleracea* and *Arabidopsis thaliana*. Theor Appl Genet 89: 885-894

U, N (1935) Genomic analysis in *Brassica* with special reference to the experimental
formation of *B. napus* and peculiar mode of fertilization. Japan J Bot 7: 389-452

Vierhouver A, Calvenger JF and Ewing CO (1920) Studies in mustard seeds and
substitutes: 1 Chinese Colza (Brassica campestris chinoleifera Viehnoever). Agric Res 20: 117-140

139
Wu T and Wu R (1987) A new rice repetitive DNA shows sequence homology to both 5S RNA and tRNA. NucI Acids Res 15: 5913-5923

Zamir D and Tanksley SD (1988) Tomato genome is comprised largely of fast-evolving, low copy number sequences. Mol Gen Genet 213: 254-261

APPENDIX 1

SOLUTIONS

1. Solution I (Alkaline lysis method, TEG)
 Tris (pH 8.0) 25mM
 EDTA 10mM
 Glucose 50mM
 Store at 4°C

 Solution II
 SDS 1%
 NaOH 0.2N
 Prepared fresh and stored at room temperature

 Solution III
 5M Potassium acetate (pH 4.8)
 To 60ml of 5M potassium acetate, added 11.5ml of glacial acetic acid and
 28.5ml of DD water. The resulting solution is 3M with respect to potassium and
 5M with respect to acetate.

2. Qiagen Plasmid preparation

 Buffer P1
 RNase A 100µg/ml
 EDTA pH 8.0 10mM
 Tris HCl 50mM
 Store at 4°C

 Buffer P2
 NaOH 200mM
 SDS 1%
 Store at room temperature

 Buffer P3
 Potassium acetate pH 4.8, 2.55mM
 Store at room temperature
Buffer QBT
NaCl 750mM
MOPS pH 7.0 50mM
Ethanol 15%
Triton-X 100 0.15%
Store at room temperature

Buffer QC
NaCl 1.0M
MOPS 50mM
Ethanol pH 7.0 15%
Store at Room Temperature

Buffer QF
NaCl 1.25M
MOPS 50mM
Ethanol pH 8.2 15%
Store at room temperature

3. 0.5M EDTA pH 8.0
46.2 g of Di Sodium EDTA.2H$_2$O was dissolved in 200 ml H$_2$O. Adjust pH with NaOH and make up the final volume to 250ml. Stirred vigorously to dissolve and autoclave.

4. 5M Potassium Acetate (pH 5.2)
To 60ml of 5M potassium acetate, added 11.5ml of Glacial Acetic acid and add DD water to a final volume of 100ml. The resulting solution is 3M with respect to potassium and 5M with respect to acetate.

5. 1M Tris-HCl
Dissolve 121.1 g of Tris-base in 800ml of DD water. Adjust the pH to the desired value by adding concentrated HCl. Allow the solution to cool to room temperature before making final adjustments of pH. Make up the final volume to 1000ml.
Autoclave and store at room temperature.

6. Denaturing solution
NaOH 0.5M
NaCl 1M

7. Neutralizing Solution
Tris HCl, pH 7.4 0.5M
NaCl 3.0M

8. 100X Denhardtts (For 500 ml)
Ficoll 10gm
Poly-vinylpyrrolidone 10gm
Bovine Serum Albumin 10gm
Dissolve in H2O and store at room temperature.

9. 20X SSC pH 7.5
Tri Sodium Citrate 88.2gm
NaCl 175.3gm
Dissolve in 900ml of DD water, adjust the pH to 7.5 and make up the final volume to 1000ml. Autoclave and store at room temperature.

10. 20 X TBE pH 8.0 (2000ml)
Tris HCl 431.12
Boric acid 220.12
EDTA 29.76

11. 10 X PCR buffer
TAPS 100mM
MgCl2 20mM
KCI 500mM
Gelatin 0.1%
12. **Sheared Salmon Sperm DNA**

SSS DNA (Sigma type III Sodium salt) was dissolved in water at a concentration of 10mg/ml. If necessary, stir on magnetic stirrer for 2 to 4 hours. Adjusted the solution to 0.1M NaCl and extracted once with phenol:chloroform. The aqueous phase was recovered and the DNA sheared by passing through a 17gauge needle. Precipitated the DNA by adding 2 volumes of ice-cold ethanol and recover by centrifugation. Redissolved at a concentration of 10mg/ml.

13. **Luria-Bertani Medium (LB Medium)**

To 950ml de-ionized H₂O added:

- Bacto tryptone: 10 g
- Bacto yeast Extract: 5 g
- NaCl: 10 g

Shook until the solutes had completely dissolved. Adjusted the pH to 7.0 with 5N NaOH. Made up the final volume to 1000ml. Autoclaved and stored.

To prepare LB-agar medium, added agar to a final concentration of 1.5%. Autoclaved and stored.

14. **Prehybridization Buffer for radioactive probe**

- 20XSSC: 25ml
- 100X Denhardts: 2ml
- 1M Tris pH 8.0: 5ml
- 10% SDS: 2ml
- 0.5M EDTA: 2ml
- Salmon sperm DNA (5mg/ml): 2ml
- H₂O: To make 100ml

15. **CTAB Extraction Buffer**

- NaCl: 0.7M
- Tris HCl pH 8.0: 50mM
- EDTA pH 8.0: 10mM
- CTAB: 1%
- β-Mercaptoethanol: 0.1%
16. **10% CTAB (For 200ml)**
Dissolved 20 g CTAB in 200 ml of 0.7 m NaCl solution. Store at room temperature.

17. **1% CTAB (For 2000 ml)**
- CTAB 20.0gm
- Tris HCl pH 8.0 12.12gm
- EDTA pH 8.0 7.44gm
Dissolved in 1500ml DDwater, adjusted the final volume and sterilized by autoclaving. Stored at room temperature.

18. **IPTG (Isopropyl-β-D-thiogalactopyranoside, C₉H₁₆O₅S; Molecular weight 238.3) 25mg/ml.**
Dissolved appropriate amount in DD water Filter sterilized and stored at -20°C.

19. **X-Gal (5-Bromo,4-Chloro, 3-indolyl- β-D-Galactopyranoside, C₁₅H₁₅BrClNO₆; MW 408.6)**
Dissolved appropriate amount in Di-methylformamide to a concentration of 20mg/ml. Stored in dark coloured bottles at -20°C.

20. **Ampicillin Trihydrate (10mg/ml)**
Dissolved the required amount in MQ water with the help of a few drops of NaOH. Filter sterilized and stored at -20°C.

21. **M-9 (Minimal Medium, 1000 ml)**
To 800ml of sterile deionized water that was cooled to 50°C added 200ml of 5X minimal salt. Before pouring the plates added necessary amino acids and carbon sources.

5X Minimal Solution (1000 ml)
- Na₂HPO₄.7H₂O 64 g
- KH₂PO₄ 15 g
- NaCl 2.5 g
- NH₄Cl 5.0 g
Aliquoted and stored after autoclaving.
Carbon source and amino acid. For 1000 ml of M9 medium added

- 20% Glucose 1ml
- 20% MgSO₄ 100μl
- B.Thiamine (1mg/ml) 500μl
- Amino Acid* (4mg/ml) 1ml

* For DH5α- used amino acid arginine
* For NM522- used amino acid proline

22. RNaseA Solution
Dissolved Pancreatic RNase (RNase A) at a concentration of 10mg/ml in 10mM Tris HCl pH 7.5, 15mM NaCl. Boil at 100°C for 15 min. Stored at -20°C.

23. 5% Polyacrylamide Gel

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>21.0 g/20ml</td>
</tr>
<tr>
<td>40% Acrylamide</td>
<td>6.0ml</td>
</tr>
<tr>
<td>20X TBE</td>
<td>2.5ml</td>
</tr>
<tr>
<td>H₂O</td>
<td>To make 50 ml</td>
</tr>
</tbody>
</table>

Filtered through Whatmann 1MM and stored in a dark bottle.

40% Acrylamide Solution
Dissolved 38 g of Acrylamide and 2 g of Bis-acrylamide in 100 ml of DD water. Stored in a dark bottle at 4°C.
Bind silane was prepared by mixing 75 μl of bind silane (γ-methacryloxy propyl trimethoxy silane) to 5ml of 10% acetic acid (v/v).

24. Repel Silane
Diluted Repel-silane stock (100%) to 3 to 4% in carbon tetra chloride for use. Stored in a dark bottle at 4°C.

25. 10% Ammonium persulphate
Dissolved 100mg of ammonium persulphate in 1ml of DD water. Store at 4°C.
26. **1M CaCl₂**
Dissolved 54 g of CaCl₂·6H₂O in 200ml of DD water. Sterilized by autoclaving and stored at 4°C.

27. **Ethidium Bromide (10mg/ml)**
Dissolved 1g of ethidium bromide in 100ml of DD water with the help of a magnetic stirrer till the dye had completely dissolved. Stored the solution in a dark bottle at 4°C.

28. **3M Sodium acetate (pH 5.2)**
Dissolved 408.1g of sodium acetate·3H₂O in 800ml of DD water. Adjust pH to 5.2 with glacial acetic acid. Dispensed in 100ml aliquots. Autoclaved and stored at room temperature.

29. **DNA extraction buffer (Dellaporta method)**
- Tris-HCl pH8.0 100mM
- EDTA pH8.0 50mM
- NaCl 500mM
- β-mercaptoethanol 0.1%
Sterilized by autoclaving and stored at room temperature. Added β-mercaptoethanol just before use.

30. **Homogenizing buffer (HB)**
- Sucrose 300mM
- MgCl2 5mM
- Tris pH7.8 50mM
Filter sterilized and stored at 4°C

31. **HBT**
- HB 98ml
- Triton X-100 2ml
Tris pH 8.0 50mM
EDTA pH 8.0 50mM
NaCl 50mM
Sarkosyl 2%

33. **TE (Tris-EDTA)**
Tris-HCl pH 8.0 10mM
EDTA 1mM

34. **10X gel loading buffer**
Xylene cyanol 10%
Bromophenol blue 10%
EDTA 150mM
Glycerol 70%

35. **Nuclei buffer**
Sucrose 0.3M
Tris-HCl pH-8.0 10mM
EDTA 1mM

36. **DNA extraction buffer (Nuclei method)**
Tris-HCl pH 8.0 100mM
NaCl 500mM
EDTA 20m M
SDS 1.0%
β-mercaptoethanol 0.1%
Add 4mg/ml of Sodium di ethyl di-thio carbamate just before use.

37. **Proteinase K (10mg/m)**
Dissolved Proteinase K at a concentration of 10mg/ml in DDwater. Filter sterilize and store at -20°C.
38. **Buffer A1 (Jetsorb®)**
 - NaClO₄
 - TBE solubilizer
 - Sodium acetate

39. **Buffer A2 (Jetsorb®)**
 - 70% alcohol
 - NaCl
 - EDTA
 - Tris-HCl

40. **Esterification reagent**
 - Methanol 20ml
 - Benzene 4ml
 - Acetyl chloride 1ml