LIST OF TABLES

TABLE	TITLE	PAGE
NO.		NO.
1.1	Face Recognition Systems	13
3.1	Comparison between existed and proposed system	40
4.1(a)	Required resources for Memory and Register	65
	use policy	
4.1 (b)	Required resources for Memory and Register	66
	use multipliers	
4.1 (c)	Required resources for Critical path and	67
	Execution time	
4.1 (d)	Required resources for Power and Energy	68
	consumption	
5.1	Approximated pdf for 'h' and 'N'	95
6.1	Trained weights in low and high frequency of	96
	motion estimation	
6.2	Performance of Eigenvector vs AFC	111
6.3	Comparison of Acceptance ratio and Execution time	113
	for Yale database images	

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO.		NO.
3.1	Operations on detecting human motion features	39
3.2	Block diagram of proposed system	41
3.3 (a)	Typical scene to be processed	43
3.3(b)	Binary foreground image after background subtraction	43
3.3 (c)	Typical scene to be processed	43
3.3 (d)	Background image	43
3.4 (a)	Foreground image after background subtraction	44
3.4 (b)	Foreground image after Morphological filtering	44
3.5	Histogram distributions for R, G and B channel	44
3.6	Histogram distributions for H and S channel	45
3.7	Structure of STM32 ARM Processor	46
3.8	Steps for ARM processor generation	47
3.9 (a)	Circuit module of STM32F103RB	49
3.9 (b)	Block diagram for STM32F103RB	50
4.1	Feature Extraction processes	54
4.2	Block diagram of face recognition system	55
4.3	Block diagram of 2-D DCT Architecture	56
4.4	Top level schematic for DCT core	57
4.5	One dimensional DCT architecture	58
4.6	Two dimensional DCT architecture	60
5.1	Correlation Extractor Module	70
5.2 (a)	Correlation among the samples and its delayed	71
	versions at lower frequency	
5.2 (b)	Correlation among the samples and its delayed	72
	versions at higher frequency	

FIGURE	TITLE	PAGE
NO.		NO.
5.3	Human Motion Estimation Network Architecture	73
5.4	Block Diagram Of Motion Estimation Filter	74
5.5	Stages of Motion Estimation Filter	74
5.6	Extracting motion signals using unsupervised network	75
5.7	Flowchart of MEF	79
5.8	Phase compensator integrated MEF	80
5.9	ML estimator for phase compensator	83
5.10	Neural Network dependency graph	88
5.11	Error plot between target data and neural data	90
5.12	Mapped output points over the range of trained input	90
	data set	
5.13	Training curve for the first 500 epochs	91
6.1 (a)	Auto correlation at LF_{MEF} and HF_{MEF}	97
6.1 (b)	Cross correlation at LF_{MEF} and HF_{MEF}	97
6.1 (c)	Mean square error at LF_{MEF} and HF_{MEF}	98
6.2 (a)	Original human motion at low frequency in polar	99
	coordinates	
6.2 (b)	Estimated human motion at low frequency in polar	99
	coordinates	
6.3 (a)	Original human motion at high frequency in polar	100
	coordinates	
6.3 (b)	Estimated human motion at high frequency in polar	101
	coordinates	
6.4	Interfacing STM32 with Matlab Simulink file	102
6.5(a)	Integrating the STM32 chip and the core DLL's in Matlab	103
6.5 (b)	Memory storage in STM32F103RB	103

FIGURE	TITLE	PAGE
NO.		NO.
6.6	Details of different modules included in STM32 chip for the human motion estimation	104
6.6(b)	Details of different modules included in STM32 chip for the human motion estimation	104
6.6(c)	Details of different modules included in STM32 chip for the human motion estimation	105
6.7	Simulated output of human motion estimation	106
	implemented in ARM core	
6.8 (a)	Keil compiled settings for backend interface	107
6.8 (b)	Process of creating Hex file settings	108
6.8 (c)	Process of creating Hex file	108
6.9	Hex file successfully created and download to hardware	109
6.10	Sample of Yale Database images	112
6.11	Optimal value of human motion estimation using PCA	114
	algorithm	
6.12 (a)	Converting videos into frames	115
6.12 (b)	Gray scale images	116
6.12 (c)	Detecting image edges	117
6.12 (d)	Segmenting the image edges	118
6.12 (e)	Final result of proposed system	119