List of Contents

S. No Contents Page no.

1 Introducion 1 - 9
 • General introduction to plant biotechnology 9 - 24
 • Techniques for genetic transformation of plant tissues and their cultures. 25 - 42
 • Literature review on *Agrobacterium rhizogenes* transformed cultures. 43 - 44
 • Some significant *Agrobacterium tumefaciens* transformed cultures. 45 - 55
 • Review on *Plumbago zeylanicum* L. 56

2 Experimental 57 - 59

 2.1 Normal Culture 60 - 61
 Experiment 1: Selection of suitable Chemical sterilant and contact time for surface sterilization of leaf and root explant of *Plumbago zeylanicum* L.
 Experiment 2: Preparation of culture media and general conditions of development of callus of *Plumbago zeylanicum* L.
 Experiment 3: Selection of suitable hormonal combination for initiation of callus from roots and leaves of *Plumbago zeylanicum* on MS medium.
 Experiment 4: To study the development of callus cultures of *Plumbago zeylanicum* L. in MS medium supplemented with different combinations and concentrations of plant growth regulators
 Experiment 5: To maintain the developed leaf and root callus cultures of *Plumbago zeylanicum* L. separately.
 Experiment 6: To study growth kinetics of leaf and root callus of *Plumbago zeylanicum* L.

 2.2 Crown gall Culture 74 - 79
 Experiment 7: Studies on the development of root and leaf suspension cultures of *P. zeylanicum*
 Experiment 8: Preparation of culture media, general conditions and objectives of development of crown gall cultures of *Plumbago zeylanicum* L. and streaking and making stocks of *Agrobacterium tumefaciens*.
 Experiment 9: Preparation of inoculum for co cultivation and inoculum count used for effective transformation
List of Contents

Experiment 10: Initiation of *Agrobacterium tumefaciens* induced 87 - 89 crown gall on the leaf explant of *P. zeylanicum*.

Experiment 11: Development of crown gall cultures of *Plumbago zeylanicum* L.

Experiment 12: Opine detection test for confirmation of 92 - 93 transformation in the crown gall induced by *A. tumefaciens* strain MTCC 2250.

Experiment 13: Maintenance of crown gall culture of *Plumbago zeylanicum* L.

Experiment 14: Growth kinetics for crown gall cultures of *Plumbago zeylanicum* L.

Experiment 15: Studies on the development of crown gall 100 - 102 suspension cultures of *P. zeylanicum*

2.3 Root cultures

Experiment 16: General conditions for the initiation and development 103 - 104 of normal root culture of *P. zeylanicum* L.

Experiment 17: Initiation of rooting from leaves of *Plumbago zeylanicum* L. in solid Gamborg's (B5) medium.

Experiment 18: Development of root culture of *Plumbago zeylanicum* L. in liquid B5 medium.

Experiment 19: Study of growth parameters of root in culture of 109 - 110 *Plumbago zeylanicum* L.

Experiment 20: Preparation of culture media, general conditions of 111 - 114 development of hairy root cultures of *Plumbago zeylanicum* L. and streaking and making stocks of *Agrobacterium rhizogenes* strains MTCC 532 and MTCC 2364.

Experiment 21: Preparation of inoculum for co-cultivation and 115 - 116 inoculum count used for effective transformation with *A. rhizogenes* strains.

Experiment 22: Initiation of *Agrobacterium rhizogenes* induced hairy roots on the leaf explant of *P. zeylanicum*.

Experiment 23: Development of hairy root cultures of *Plumbago zeylanicum* 120 - 122
List of Contents

zeylanicum L.

Experiment 24: Opine detection test for confirmation of 123 - 124 transformation in the hairy roots induced by A. rhizogenes strain MTCC 2364.

Experiment 25: Maintenance of hairy root cultures of Plumbago zeylanicum L. in liquid half strength MS medium. 125 - 126

Experiment 26: Maintenance of hairy root cultures of Plumbago zeylanicum L. in solid half strength MS medium. 127 - 128

Experiment 27: Growth kinetics for hairy root cultures of Plumbago zeylanicum L. 129 - 131

3 Phytoclicmical Investigations

Experiment 29: Quantitative estimation of plumbagin in root, leaf calli, leaf callus suspension, root calli, root callus suspension, crown gall, crown gall suspension, root culture and hairy root cultures of P. zeylanicum by HPTLC. 140 - 146

4 Pharmacological investigation
Experiment 30: To study antimicrobial activity of methanolic water soluble extract of leaf, root, leaf calli, root calli, crown gall, root culture and hairy root cultures of P. zeylanicum on Escherichia Coli and Staphylococcus aureus. 147 - 150

Experiment 31: To evaluate hepatoprotective activity of natural leaf, root, leaf calli, root calli, crown gall, root culture and hairy roots of P. zeylanicum. 151 -172

Experiment 32: To study histopathology of liver sections of all the nine group of animals used in hepatoprotective study. 173 - 176

5 Results and Discussions 177 - 187
6 Conclusions 188
7 Summary 189- 196
8 Reference 197 - 212
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Showing phytochemical and biological importance of plants.</td>
<td>1</td>
</tr>
<tr>
<td>Table 2</td>
<td>High yielding plant cell cultures</td>
<td>3</td>
</tr>
<tr>
<td>Table 3</td>
<td>New secondary products in cell cultures unknown in intact plant</td>
<td>4</td>
</tr>
<tr>
<td>Table 4</td>
<td>Enhanced secondary products released upon immobilization.</td>
<td>5</td>
</tr>
<tr>
<td>Table 5</td>
<td>Commercially viable biotransformations</td>
<td>5-6</td>
</tr>
<tr>
<td>Table 6</td>
<td>Some internationally used strains of Agrobacterium</td>
<td>12</td>
</tr>
<tr>
<td>Table 7</td>
<td>Examples where antisense technology in useful</td>
<td>24</td>
</tr>
<tr>
<td>Table 8</td>
<td>Enhanced production of secondary metabolites in hairy root cultures.</td>
<td>30</td>
</tr>
<tr>
<td>Table 9</td>
<td>New compounds isolated from hairy root cultures</td>
<td>34-35</td>
</tr>
<tr>
<td>Table 10</td>
<td>Some significant studies on hairy root cultures</td>
<td>42</td>
</tr>
<tr>
<td>Table 11</td>
<td>Shows some of transformed plants by A. tumefaciens</td>
<td>44</td>
</tr>
<tr>
<td>Table 12</td>
<td>Effect of three chemical sterilants used for sterilization of leaf and root explant of P. zeylanicu</td>
<td>58</td>
</tr>
<tr>
<td>Table 13</td>
<td>Composition of MS basal medium</td>
<td>60-61</td>
</tr>
<tr>
<td>Table 14</td>
<td>Effect of various combinations of phytohormones for initiation of callus from leaf and root explant of Plumbago zeylanicu in M.S. basal medium</td>
<td>63-64</td>
</tr>
<tr>
<td>Table 15</td>
<td>Development of leaf and root callus in MS medium supplemented with various concentrations and combinations of plant growth regulators</td>
<td>66</td>
</tr>
<tr>
<td>Table 16</td>
<td>Maintenance of leaf and root calli on MS medium for subsequent passages.</td>
<td>69</td>
</tr>
<tr>
<td>Table 17</td>
<td>The growth pattern for leaf calli of P. zeylanicu L.</td>
<td>71</td>
</tr>
<tr>
<td>No.</td>
<td>Table Title</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>18</td>
<td>The growth pattern for root calli of P. zeylanicum</td>
<td>71</td>
</tr>
<tr>
<td>19</td>
<td>Rate of growth of suspension culture of root and leaf callus in MS medium supplemented with IAA + 2,4-D (2 ppm each)</td>
<td>76</td>
</tr>
<tr>
<td>20</td>
<td>Modified MS 100 medium for transgenic cultures</td>
<td>81</td>
</tr>
<tr>
<td>21</td>
<td>Modified MS 300 medium for transgenic cultures.</td>
<td>81</td>
</tr>
<tr>
<td>22</td>
<td>MS antibiotic medium</td>
<td>82</td>
</tr>
<tr>
<td>23</td>
<td>Growth medium for A. tumefaciens MTCC 431</td>
<td>82</td>
</tr>
<tr>
<td>24</td>
<td>Growth medium for A. tumefaciens MTCC 2250</td>
<td>83</td>
</tr>
<tr>
<td>25</td>
<td>Incubation time and temperature for different strains of A. tumefaciens.</td>
<td>83</td>
</tr>
<tr>
<td>26</td>
<td>Shows the serial dilution and number of colonies for the two strains of A. tumefaciens</td>
<td>86</td>
</tr>
<tr>
<td>27</td>
<td>Effect of contact time with two strains of Agrobacterium tumefaciens on the leaf explant after four weeks</td>
<td>88</td>
</tr>
<tr>
<td>28</td>
<td>The effect of light and darkness on tumour induced callus of P. zeylanicum</td>
<td>90</td>
</tr>
<tr>
<td>29</td>
<td>Shows the effect of concentrations of MS medium on crown gall callus of P. zeylanicum</td>
<td>91</td>
</tr>
<tr>
<td>30</td>
<td>Observations of crown gall culture in various passages.</td>
<td>95</td>
</tr>
<tr>
<td>31</td>
<td>The growth kinetics for crown gall callus of P. zeylanicum L. in terms of increase in fresh weight and growth index.</td>
<td>97</td>
</tr>
<tr>
<td>32</td>
<td>The growth kinetics for crown gall callus of P. zeylanicum in terms of dry weight and growth index</td>
<td>98</td>
</tr>
<tr>
<td>33</td>
<td>Rate of growth of suspension of crown gall in MS medium</td>
<td>100</td>
</tr>
<tr>
<td>34</td>
<td>Composition of Gamborg's (B5) medium</td>
<td>103</td>
</tr>
<tr>
<td>35</td>
<td>Observations of Initiation of rooting on leaf in B5 medium supplemented with various concentrations of NAA and kinetin.</td>
<td>105</td>
</tr>
<tr>
<td>Table 36</td>
<td>The observation for various combinations tested for the development of root culture.</td>
<td>107</td>
</tr>
<tr>
<td>Table 37</td>
<td>The growth parameters recorded for the root cultures of P. zeylaniculum L.</td>
<td>110</td>
</tr>
<tr>
<td>Table 38</td>
<td>Growth medium for Agrobacterium rhizogenese MTCC 532</td>
<td>112</td>
</tr>
<tr>
<td>Table 39</td>
<td>Growth medium for A. rhizogenese MTCC 2364.</td>
<td>113</td>
</tr>
<tr>
<td>Table 40</td>
<td>Incubation time and temperature for different strains of A. rhizogenese</td>
<td>113</td>
</tr>
<tr>
<td>Table 41</td>
<td>Shows the serial dilution and number of colonies for A. rhizogenese strains MTCC 532 and MTCC 2364.</td>
<td>116</td>
</tr>
<tr>
<td>Table 42</td>
<td>Effect of contact time with two strains of A. rhizogenese on leaf explant after four weeks.</td>
<td>118</td>
</tr>
<tr>
<td>Table 43</td>
<td>Growth of hairy root cultures at the end of four weeks.</td>
<td>120</td>
</tr>
<tr>
<td>Table 44</td>
<td>The effect of MS concentration on hairy root cultures of P. Zeylaniculum L.</td>
<td>121</td>
</tr>
<tr>
<td>Table 45</td>
<td>Effect of light and complete darkness on the biomass after 4 weeks on hairy root cultures of P. zeylanicum L.</td>
<td>122</td>
</tr>
<tr>
<td>Table 46</td>
<td>Observations for various passages of hairy root cultures of Plumbago zeylanicum on ½ MS liquid medium</td>
<td>126</td>
</tr>
<tr>
<td>Table 47</td>
<td>Observation for various passages of hairy root cultures on ½ MS solid medium.</td>
<td>128</td>
</tr>
<tr>
<td>Table 48</td>
<td>The growth kinetics for hairs roots of P. zeylanicum L. in terms of increase in fresh weight and growth index.</td>
<td>130</td>
</tr>
<tr>
<td>Table 49</td>
<td>The growth kinetics for hairy roots of P. zeylanicum L. in terms of increase in dry weight and growth index.</td>
<td>130</td>
</tr>
<tr>
<td>Table 50</td>
<td>Presence/absence of various metabolites in leaf, root, leaf calli, leaf callus suspension, crown gall, crown gall suspension, root culture and hairs roots of Plumbago zeylanicum L.</td>
<td>137-138</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Table 51</td>
<td>Plumbagin content % w/w in various samples is calibrated with respect to area by HPTLC</td>
<td>142</td>
</tr>
<tr>
<td>Table 52</td>
<td>Plumbagin content % w/w in various samples is calibrated with respect to height by HPTCL</td>
<td>143</td>
</tr>
<tr>
<td>Table 53</td>
<td>Composition of growth medium for E.Coli and S. aureus</td>
<td>147</td>
</tr>
<tr>
<td>Table 54</td>
<td>Minimum inhibitory concentration of ampicillin with zone of inhibition.</td>
<td>148</td>
</tr>
<tr>
<td>Table 55</td>
<td>Zone of inhibition for aqueous extracts of various samples.</td>
<td>149</td>
</tr>
<tr>
<td>Table 56</td>
<td>Groups and treatment used in hepatoprotective study</td>
<td>152 - 153</td>
</tr>
<tr>
<td>Table 57</td>
<td>Different volume of reagents used for preparation of standard curve</td>
<td>155</td>
</tr>
<tr>
<td>Table 58</td>
<td>The reported enzyme activity (as given in kit supplied by span diagnostic) for different volume of reagents as given in table 57) prepared to plot standard graph of SGOT.</td>
<td>155</td>
</tr>
<tr>
<td>Table 59</td>
<td>Absorbance for different volume of reagents at 505 mm to prepare standard curve.</td>
<td>156</td>
</tr>
<tr>
<td>Table 60</td>
<td>Different volume of reagents used for preparation of standard curve.</td>
<td>158</td>
</tr>
<tr>
<td>Table 61</td>
<td>Showing the reported enzyme activity for 5 tubes prepared to plot standard graph for SGPT</td>
<td>159</td>
</tr>
<tr>
<td>Table 62</td>
<td>Absorbance for five tubes at 505 mm to prepare standard curve.</td>
<td>159</td>
</tr>
<tr>
<td>Table 63</td>
<td>Sample preparation of bilirubin.</td>
<td>161</td>
</tr>
<tr>
<td>Table 64</td>
<td>Preparation of blank, standard, control and test samples.</td>
<td>163</td>
</tr>
<tr>
<td>Table 65</td>
<td>Effect of natural root, crown gall, leaf callus, hairy root, root culture and root callus of P. zeylanicum and silymarin treatments on biochemical parameters in rats subjected to carbon terachloride induced hepato toxicity.</td>
<td>166</td>
</tr>
<tr>
<td>Table 66</td>
<td>Various histopathological changes observed for nine groups of animals.</td>
<td>175</td>
</tr>
</tbody>
</table>
List of Figures

1. Plant of *Plumbago zeylanicum* Linn
2. Flowering shoot of *P. zeylanicum*
3. Leaf callus initiating from whole leaf in 25 days on MS medium supplemented with kinetin (1 ppm).
4. Leaf callus initiating in 30 days from the bottom of the leaf on MS medium supplemented with 6 BA (1 ppm).
5. Callus initiating in 25 days from the margins of the leaf on MS medium supplemented with IAA + 2, 4-D (1 ppm each).
6. Prominent callus initiating in 20 days from the leaf on MS medium supplemented with IAA + 6 BA (1 ppm each)
7. Root first turned brown and prominent callus initiated from the whole root on MS medium supplemented with IAA + 6 BA (1 ppm each).
8. Brownish black leaf callus developed on MS medium supplemented with 6 BA (1 ppm).
9. Prominent leaf callus developed on MS medium Supplemented with IAA + 6 B (2 ppm each).
10. Brown root callus developed on MS medium supplemented with IAA + 6 BA (1 ppm each).
11. Green leaf callus developed on MS medium supplemented with IAA (1 ppm) + 2, 4-D (2 ppm each).
12. Prominent yellowish brown leaf callus developed on MS medium supplemented with IAA + 2, 4-D (2 ppm each)
13. Prominent root callus developed on MS medium supplemented with IAA + 2, 4-D (2 ppm each).
14. Dark brown leaf callus maintained on MS medium supplemented with IAA + 6 BA (2 ppm each).
15. Dark brown leaf callus maintained on MS medium supplemented with IAA + 6 BA (2 ppm each).
16. Greenish brown leaf callus maintained on MS medium supplemented with IAA + 2, 4-D (2 ppm each).
17. Greenish brown leaf callus maintained on MS medium supplemented with IAA + 2, 4-D (2 ppm each).
18. Hard brown root callus in the second passage on MS medium supplemented with IAA + 2, 4-D (2 ppm each).
List of Figures

19. Hard brown root callus in the third passage on MS medium supplemented with IAA + 2,4-D (2 ppm each).

20. Hard brown root callus in the fifth passage on MS medium supplemented with IAA + 2,4-D (2 ppm each).

21. Increase in fresh and dry weight of leaf callus of *P. zeylanicum* vs Time.

22. Increase in dry weight of leaf callus of *P. zeylanicum* vs Time.

23. Increase in fresh weight of root and leaf callus suspension of *P. zeylanicum* vs Time.

24. Increase in fresh weight of root and leaf callus suspension of *P. zeylanicum* vs Time.

25. Increase in packed cell volume / 10ml of root and leaf callus suspension of *P. zeylanicum* vs Time.

26. Increase in number of cells \(\times 10^6 \) / ml of root and leaf callus suspension of *P. zeylanicum* vs Time.

27. Leaf explant swelled showing the initiation of crown gall on MS medium with 300 \(\mu \text{g} \)/ ml of cefataxime.

28. Crown gall initiating in 28 days from the *A. tumefaciens* infected leaf explant on MS medium with 300 \(\mu \text{g} \)/ ml of cefataxime.

29. Crown gall initiating in 28 days from the whole leaf explant infected with *A. tumefaciens* MTCC 2250 on MS medium supplemented with 300 \(\mu \text{g} \)/ ml of cefataxime.

30. Electrophoretogram showing crown gall extract positive for agropine.

31. Black colored tumeroides seen on the crown gall in the first passage on MS medium supplemented with cefataxime.

32. Black colored tumeroides seen on the crown gall in the first passage on MS medium supplemented with cefataxime.

33. Blackish brown crown gall formed on infected leaf seen in the first passage on MS medium with 300 \(\mu \text{g} \)/ ml of cefataxime.

34. In the second passage, fibrous roots initiated on the crown gall (25 % of flasks) on MS medium with 300 \(\mu \text{g} \)/ ml of cefataxime.

35. In the second passage, fibrous roots initiated on the crown gall (25 % of flasks) on medium with 300 \(\mu \text{g} \)/ ml of cefataxime.

36. Brown colored massive callus formed in the second passage on MS medium with 300 \(\mu \text{g} \)/ ml of cefataxime.

37. Blackish brown massive callus formed in second passage in the second passage on MS medium with 300 \(\mu \text{g} \)/ ml of cefataxime.

38. The rootlets (originating in the second passage) on the crown gall turned brown and degenerated in the third passage on MS medium with 300 \(\mu \text{g} \)/ ml of cefataxime.
39. The rootlets (originating in the second passage) on the crown gall turned brown and degenerated in the third passage on MS medium with 300 µg / ml of cefataxime.

40. Brown profuse callus formed in the fourth passage on MS medium with 300µg / ml of cefataxime.

41. Brown profuse callus formed in the fourth passage on MS medium with 300µg / ml of cefataxime.

42. Massive callus formed in the fifth passage on MS medium with 300µg / ml of cefataxime.

43. Massive callus formed in the fifth passage on MS medium with 300µg / ml of cefataxime.

44. Growth kinetics for the fresh and dry weight of crown gall.

45. Growth curve of crown gall suspension in terms of increase in the fresh and dry weight.

46. Growth curve of crown gall suspension in terms of packed cell volume / 10 ml.

47. Growth curve of crown gall suspension in terms of number of cells / ml.

48. Rooting in 6 weeks old callus initiated on Gamborg's (B5) medium supplemented with NAA + Kinetin (1 ppm each).

49. Rooting in 6 weeks old callus initiated on Gamborg's (B5) medium supplemented with NAA + Kinetin (1 ppm each).

50. Only callus initiated and no rooting occurred in medium supplemented with NAA (1 ppm) + Kinetin (2 ppm).

51. Roots initiating from 2 weeks old callus initiated on B5 medium supplemented with NAA + Kinetin (2 ppm each).

52. Profuse rooting in two weeks old callus initiated on B5 medium supplement with NAA + Kinetin (2 ppm each) view from the bottom of culture.

53. Profuse rooting in two weeks old callus initiated on B5 medium supplemented with NAA + Kinetin (2 ppm each).

54. Rosette aggregation of roots in 40 days old root culture in liquid Gamborg's (B5) medium supplemented with NAA + Kinetin (2 ppm each).

55. 40 days old root culture showing rootlets in Gamborg's B5 medium supplemented with NAA + Kinetin (2 ppm each).

56. 40 days old root culture showing rootlets in Gamborg's B5 medium supplemented with NAA + Kinetin (2 ppm each).

57. 40 days old root culture showing stunted growth in liquid Gamborgs (B5) medium supplemented with NAA (1 ppm) + Kinetin (2 ppm each).

58. 40 days old root culture showing rootlets in liquid Gamborg's B5 medium.
List of Figures

supplemented with NAA (2 ppm)+ Kinetin (2 ppm each)

59. Hairy roots emerging from cut and infected with *A. rhizogenes* strain MTCC 2364 on solid MS medium supplemented with 200 μg/ml of cefataxime.

60. Hairy roots emerging from cut and infected with *A. rhizogenes* strain MTCC 2364 on solid MS medium supplemented with 200 μg/ml of cefataxime.

61. Hairy roots emerging from cut and infected with *A. rhizogenes* strain MTCC 2364 on solid MS medium supplemented with 200 μg/ml of cefataxime. (a view from the bottom of the flask).

62. Electrophoretogram showing hairy root extract positive for mannopine and agropine.

63. Profuse fine white hairy roots originating from detached portion of explant in the first passage in ½ MS liquid medium.

64. Profuse fine white hairy roots originating from detached portion of explant in the first passage in ½ MS liquid medium.

65. Profuse fine white hairy roots originating from detached portion of explant in the first passage in ½ MS liquid medium.

66. Profuse fine white hairy roots maintained in the second passage in ½ MS liquid medium.

67. Profuse fine white hairy roots maintained in the second passage in ½ MS liquid medium.

68. Profuse fine white hairy roots maintained in the second passage in ½ MS liquid medium.

69. Hairy roots increased in biomass in the third passage while they were still white.

70. Nodules formed in the hairy roots in 25% flasks maintained in the third passage on ½ MS liquid medium.

71. White hairy roots maintained in ½ MS medium in the fourth passage.

72. White hairy roots maintained in ½ MS medium in the fourth passage.

73. Browning of roots with nodules occurred in the fourth passage.

74. Profuse white hairy roots maintained in ½ MS medium in the fifth passage.

75. Profuse white hairy roots maintained in ½ MS medium in the fifth passage.

76. Brown nodular roots maintained in ½ MS liquid medium in the fifth passage.

77. Profuse rooting occurred on the leaf explant infected with MTCC 2364 on ½ MS solid medium.

78. Noticeable increase in the rooting in one week on the leaf explant showed in Figure 79.

79. Profuse rooting occurring on the leaf explant in the first passage on ½ MS solid medium.

80. Profuse rooting occurring on the leaf explant in the first passage on ½ MS solid
List of Figures

81. Callusing along with the rooting occurring simultaneously in the first passage on ½ MS solid medium.
82. Callusing along with the rooting occurring simultaneously in the first passage on ½ MS solid medium.
83. Excessive rooting on the leaf explant which was transferred without chopping from the first passage.
84. Excessive rooting on the leaf explant which was transferred without chopping in the second passage.
85. Callus showing rooting which was transferred from the first passage without chopping in the second passage maintained on ½ MS solid medium.
86. The roots growing in terms of length and callus growing along turning brown in the third passage in ½ MS solid medium.
87. The roots growing in terms of length and callus growing along turning brown in the third passage in ½ MS solid medium.
88. The roots growing in terms of length and callus growing along turning brown in the third passage in ½ MS solid medium.
89. Roots growing more in length and becoming negatively geotropic in the fourth passage on ½ MS solid medium.
90. Roots growing more in length and becoming negatively geotropic in the fourth passage on ½ MS solid medium.
91. Roots growing more in length and becoming negatively geotropic in the fourth passage on ½ MS solid medium. (A view from the bottom of the flask).
92. Hairy roots maintained on ½ Ms solid medium in the fifth passage.
93. New white puffy hairy roots emerging on the main axis of the hairy roots in 10 % of the flasks on ½ MS solid medium.
94. Showing growth kinetics for fresh and dry weight of hairy root culture.
95. UV maxima of Plumbagin.
96. Mass spectra of Plumbagin.
97. Plumbagin content % w/w as calibrated with respect to area for different samples.
98. Plumbagin content % w/w as calibrated with respect to height for different samples.
99. Shows zone of inhibition at 1000 μg/ml of root, root callus, root culture, hairy root and crown gall ethanolic extracts and ampicillin (20 μg/ml) against E.coli.
100. Shows zone of inhibition 1000 μg/ml of root, root callus, root culture, hairy root and crown gall ethanolic extracts and ampicillin (20 μg/ml) against S. aureus.
List of Figures

101. SGOT calibration curve.
102. Standard plot for SGPT.
103. Histographical representation of SGOT (U/ml) levels for nine groups studied.
104. Histographical representation of SGPT (U/ml) levels for nine groups studied.
105. Histographical representation of ALP (KA Unit) levels for nine groups studied.
106. Histographical representation of bilirubin (mg/100 ml) levels for nine groups studied.
107. Histographical representation of total protein (g/100 ml) levels for nine groups studied.
108. Histographical representation of total albumin (g/100 ml) levels for nine groups studied.
109. Low power photomicrograph of liver from control group animal showing normal liver parenchyma. (H&E x 100)
110. High power photomicrograph of liver from control group animal showing a typical portal triad composed of portal vein, hepatic artery and bile duct. (H&E x 400)
111. High power photomicrograph of liver from control group animal showing a typical central vein surrounded by centrilobular hepatocytes. (H&E x 400)
112. Low power photomicrograph of liver from animal treated with 2ml/kg of CCl₄ showing fatty change restricted to the centrilobular zones. (H&E x 100)
113. High power photomicrograph of liver from animal treated with 2ml/kg of CCl₄ showing hepatocytes with fatty vacuolation in the centrilobular zone. Hepatocytes around the portal triad do not show this change. (H&E x 400)
114. High power photomicrograph of liver from animal treated with 2ml/kg of CCl₄ showing the centrilobular zone. The central vein is surrounded by hepatocytes showing severe fatty change. (H&E x 400).
115. High power photomicrograph of liver from animal treated with 2ml/kg of CCl₄ showing a portal triad with moderate degree of periportal inflammatory cell infiltration. (H&E x 400)
116. Low power photomicrograph of liver from animal treated with 2ml/kg of CCl₄ and natural root extract showing centrilobular fatty change of a milder degree than that seen in the toxic control group. (H&E x 100)
117. High power photomicrograph of liver from animal treated with 2ml/kg of CCl₄ and natural root extract showing the centrilobular fatty change. (H&E x 400).
118. Low power photomicrograph of liver from animal treated with CCl₄ and (Sample Group IV) showing only sinusoidal dilatation and focal fatty change in centrilobular zone (H&E x 100)
119. High power photomicrograph of liver from animal treated with CCl₄ and (Sample
List of Figures

120. Low power photomicrograph of liver from animal treated with CCl₄ and (Sample Group V) showing more severe changes in the centrilobular zones in the form of scattered fatty change and necrosis (H&E x 100).

121. High power photomicrograph of liver from animal treated with CCl₄ and (Sample Group V) showing the centrilobular zones with fatty change. (H&E x 400)

122. Low power photomicrograph of liver from animal treated with CCl₄ and (Sample Group VI) showing almost normal appearance of liver parenchyma. Occasional cells with fatty change seen. (H&E x 100)

123. High power photomicrograph of liver from animal treated with CCl₄ and (Sample Group VI) showing normal hepatocytes in the periportal and mid zonal areas. (H&E x 400)

124. Low power photomicrograph of liver from animal treated with CCl₄ and (Sample Group VII) showing sinusoidal dilatation and focal fatty change in the centrizonal area (H&E x 100).

125. High power photomicrograph of liver from animal treated with CCl₄ and (Sample Group VII) showing normal hepatocytes in the periportal and mid zonal areas. (H&E x 400)

126. Low power photomicrograph of liver from animal treated with CCl₄ and (Sample Group VIII) showing focal fatty change in the centrizonal area (H&E x 100).

127. High power photomicrograph of liver from animal treated with CCl₄ and (Sample Group VIII) showing normal hepatocytes in the periportal and mid zonal areas. (H&E x 400)

128. Low power photomicrograph of liver from animal treated with CCl₄ and Silymarin showing moderate degree of fatty change in the centrizonal area hepatocytes (H&E x 100).

129. High power photomicrograph of liver from animal treated with CCl₄ and Silymarin showing extension of fatty change into the midzonal area hepatocytes (H&E x 400).

130. Showing fold increase in the biomass after 14 weeks in term of fresh weight.

131. Showing fold increase in the biomass after 14 weeks in term of dry weight.

132. Showing fold increase in the biomass of different suspension cultures after 21 days in term of fresh weight.

133. Showing fold increase in the biomass of different suspension cultures after 21 days in term of dry weight.