CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copyright</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>Declaration</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>Certificate</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1-25</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>The Impact of Cancer in India</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Cancer: A brief Outline</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Cancer Chemotherapy</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Microtubules as target for Cytotoxic drugs</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Mechanism of action of Microtubule-Targeting Drugs</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Agents that bind to the taxane site</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Challenges in Cancer Chemotherapy</td>
<td>10</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Oral Cancer Chemotherapy</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Nanoparticle Technology for Cancer Chemotherapy</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Solid Lipid Nanoparticle Technology</td>
<td>18</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Peculiar characteristics of SLN as Drug Delivery Agents</td>
<td>20</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Steps towards the pharmaceutical market</td>
<td>20</td>
</tr>
<tr>
<td>1.3.1.3</td>
<td>Solid Lipid Nanoparticles as carriers for oral administration of Paclitaxel</td>
<td>21</td>
</tr>
<tr>
<td>2.0</td>
<td>LITERATURE REVIEW</td>
<td>26-76</td>
</tr>
<tr>
<td>2.1</td>
<td>Solid Lipid Nanoparticles Overview</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Solid Lipid Nanoparticle Production Techniques</td>
<td>27</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Preparation of SLN by high shear homogenization and ultrasound</td>
<td>29</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Preparation of SLN by high pressure homogenization</td>
<td>31</td>
</tr>
</tbody>
</table>
2.2.3 Preparation of SLN by solvent emulsification/diffusion technique

2.2.4 Preparation of SLN by solvent emulsification/evaporation technique

2.2.5 Preparation of SLN by microemulsion technique

2.2.6 Preparation of SLN by solvent injection technique

2.3 Effect of Lipids and Surfactants

2.4 Development of SLN systems able to avoid clearance by reticuloendothelial system (RES)

2.5 Solid Lipid Nanoparticle Stability

2.5.1 Improved stability of cytotoxicity compounds by SLN encapsulation

2.6 Drug Loading and Release from Lipid Nanoparticles

2.6.1 Improved control of the rate and extent of drug release

2.7 SLN for peroral administration

2.7.1 Hypotheses of mechanism of action of lipid-based delivery systems

2.7.2 Mechanisms of bioavailability enhancement by lipid nanoparticles

2.8 Role of SLN for cytotoxic drug delivery – Progress and strategies

2.9 Pharmacological Performance of Solid Lipid Nanoparticle Systems

2.9.1 Biodistribution of SLN and SLN-encapsulated drugs

2.9.2 Significant anticancer activity of SLN-encapsulated cytotoxic drugs

2.10 Paclitaxel Delivery

2.11 Paclitaxel analysis using HPLC

3.0 OBJECTIVE AND PLAN OF WORK

3.1 Objectives of the present study

3.2 Rationale of using SLN for paclitaxel oral delivery

3.3 Paclitaxel: A drug profile

3.3.1 Physico-chemical properties of Paclitaxel
3.3.2 Mechanism of action of Paclitaxel

3.3.3 Limitations

3.3.3.1 Availability

3.3.3.2 Solubility

3.3.4 Dose, dosing and problems

3.3.5 Clinical Pharmacology

3.4 Plan of work

4.0 EXPERIMENTAL

4.1 Materials and Equipments

4.2 Preparation of standard solutions/buffers

4.2.1 Simulated gastric fluid

4.2.2 Phosphate buffered saline

4.3 Characterization and identification of paclitaxel

4.4 Analytical methodology for paclitaxel

4.4.1 Instrumentation

4.4.2 Chromatographic conditions

4.4.3 Preparation of stock solution

4.4.4 Preparation of standard solutions

4.4.5 Preparation of calibration curve

4.4.6 Extraction procedures

4.4.7 Validation of analytical method

4.5 Thiobarbituric acid–reactive species (TBARS) assay

4.5.1 Preparation of calibration curve of MDA

4.5.2 Assay procedure

4.6 Preparation of Solid Lipid Nanoparticles

4.6.1 Preparation of SLN using established microemulsion technique

4.6.2 Preparation of SLN using modified solvent injection technique

4.7 Optimization parameters for modified solvent injection technique

4.8 Preparation of Paclitaxel loaded SLN using modified
solvent injection method

4.9 **Determination of drug loading and entrapment efficiency**

4.10 **Characterization of Solid Lipid Nanoparticles**

4.10.1 Surface morphology

4.10.1.1 Scanning electron microscopy

4.10.1.2 Transmission electron microscopy

4.10.2 Size and zeta potential measurements

4.10.3 Differential scanning calorimetry

4.10.4 X-ray diffraction

4.10.5 Surface chemistry characterization using FTIR

4.11 **In vitro** release kinetics of paclitaxel from SLN

4.11.1 Preparation of dialysis bag

4.11.2 Dialysis set up

4.11.3 Dialysis bag-method and sampling

4.11.4 Data Analysis

4.11.5 Stability study in simulated gastric fluid

4.12 Stability studies of optimized SLN formulation

4.13 **In vitro** cytotoxicity

4.13.1 MTT assay

4.14 **In vivo** studies

4.14.1 Preparation of SLN for in vivo studies

4.14.2 Pharmacokinetics and biodistribution studies

4.15 Toxicity studies

5.0 **RESULTS AND DISCUSSION**

5.1 Characterization and identification of paclitaxel

5.1.1 Physical characteristics

5.1.2 Identification by FTIR spectroscopy

5.1.3 UV absorption spectroscopy

5.1.4 Determination of melting point

5.1.5 X-ray diffraction
5.2 Analytical methodology for paclitaxel 132
5.2.1 Chromatography 132
5.3 Assessment of preparation techniques 141
5.3.1 Microemulsion technique 141
5.3.1.1 Effect of lipids and surfactants 143
5.3.2 Modified solvent injection technique 148
5.3.2.1 Effect of lipids and surfactants 149
5.3.2.2 Optimization of modified solvent injection technique 151
5.4 Assessment of Paclitaxel Incorporation into solid lipid nanoparticles 160
5.5 Characterization of paclitaxel loaded SLN 164
5.5.1 Surface Morphology Characterization of paclitaxel-loaded SLN 164
5.5.2 Surface Charge Characterization 164
5.5.3 Differential scanning calorimetry 167
5.5.4 X-ray Diffraction Studies 169
5.5.5 Surface chemistry characterization 171
5.6 In vitro release kinetics of paclitaxel loaded SLN 174
5.7 Stability Studies of optimized Paclitaxel loaded SLN 184
5.8 In vitro cytotoxicity effect of paclitaxel loaded SLN 191
5.9 In vivo studies 193
5.9.1 Plasma Profiles 193
5.9.2 Tissue Distribution Profiles 197
5.10 Toxicity studies 203
5.10.1 Haematological Parameters 203
5.10.2 Liver Function Test 203
5.10.3 Histopathological Studies 204
6.0 SUMMARY AND CONCLUSIONS 209-218
7.0 REFERENCES 219-262

ANNEXURE I. List of publications
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1-1. Comparison of solid lipid nanoparticles with other colloidal carriers</td>
<td>17</td>
</tr>
<tr>
<td>Table 1-2. Strengths and weaknesses of existing SLN synthesis techniques</td>
<td>25</td>
</tr>
<tr>
<td>Table 2-1. Lipids and surfactants used in solid lipid nanoparticle production</td>
<td>43</td>
</tr>
<tr>
<td>Table 2-2. Drugs incorporated into solid lipid nanoparticles</td>
<td>52</td>
</tr>
<tr>
<td>Table 2-3. Applications of SLN system as potential drug delivery system</td>
<td>60</td>
</tr>
<tr>
<td>Table 2-4. Possible Mechanisms of Oral Bioavailability Enhancement In Vivo</td>
<td>62</td>
</tr>
<tr>
<td>Table 2-5. A summary of SLN formulations used for delivery of drugs with anticancer properties and the significant works based on these formulations</td>
<td>65</td>
</tr>
<tr>
<td>Table 2-6. Comparison of the steps employed in the SPE to extract paclitaxel from plasma samples</td>
<td>75</td>
</tr>
<tr>
<td>Table 3-1. Stages in the development of paclitaxel as an anticancer drug</td>
<td>82</td>
</tr>
<tr>
<td>Table 3-2. Summary of therapeutic efficacy and toxicities encountered with paclitaxel therapy</td>
<td>91</td>
</tr>
<tr>
<td>Table 3-3. Pharmacokinetic Properties of Paclitaxel</td>
<td>94</td>
</tr>
<tr>
<td>Table 4-1. List of materials</td>
<td>97</td>
</tr>
<tr>
<td>Table 4-2. List of equipments</td>
<td>99</td>
</tr>
<tr>
<td>Table 4-3. Release kinetics models for analysis of in vitro release data</td>
<td>121</td>
</tr>
<tr>
<td>Table 5-1. Extraction recovery of paclitaxel (mean ± S.D., n=3)</td>
<td>139</td>
</tr>
<tr>
<td>Table 5-2. Intra-day and inter-day accuracy and precision of paclitaxel assay in mouse plasma and buffer</td>
<td>141</td>
</tr>
<tr>
<td>Table 5-3. Effect of co-surfactant selection on particle size and polydispersity index of SLN (mean ± S.D., n=3)</td>
<td>142</td>
</tr>
<tr>
<td>Table 5-4. Effect of different stearic acid, surfactant and co-surfactant molar ratios on particle size and polydispersity index of SLN (mean ±</td>
<td>144</td>
</tr>
</tbody>
</table>
Table 5-5. Effect of different tripalmitin, surfactant and co-surfactant molar ratios on particle size and polydispersity index of SLN (mean ± S.D., n=3)

Table 5-6. Influence of different lecithin concentrations on the particle size and polydispersity of lipid nanoparticles (mean ± S.D., n=3)

Table 5-7. Effect of different poloxamer 188 concentrations on the particle size, polydispersity index and zeta potential of SLN prepared using various lipids (mean ± S.D., n=3)

Table 5-8. Effect of lyophilization on size and polydispersity of SLN (mean ± S.D., n=3)

Table 5-9. Effect of paclitaxel content on properties of paclitaxel loaded SLN

Table 5-10. Kinetics of optimized formulation of paclitaxel loaded SLN

Table 5-11. CC50 of paclitaxel and its formulation in HepG2 cell lines by MTT assay

Table 5-12. Pharmacokinetic parameters of paclitaxel in different formulations obtained from in vivo studies in mice

Table 5-13. Comparative concentration-time profiles of paclitaxel in mice (oral) with free paclitaxel and paclitaxel-SLN formulation

Table 5-14. Relative exposure of free paclitaxel and paclitaxel-SLN formulations in mice

Table 5-15. Comparative exposure (AUC ng.hr/g) of paclitaxel in various tissues of mice after oral administration of free paclitaxel and paclitaxel-SLN formulation

Table 5-16. Anova single factor analysis

Table 5-17. Haematological test values

Table 5-18. Liver function test values
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1.</td>
<td>The structure of microtubule</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1-2.</td>
<td>Schematic of the cell cycle</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1-3.</td>
<td>Diagrammatic comparison of traditional/conventional and nanotechnology based treatment</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1-4.</td>
<td>Structure of Solid Lipid Nanoparticle (Lipid monolayer enclosing a solid lipid core)</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2-1.</td>
<td>An example of electrostatic repulsion producing a net repulsion between particles</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2-2.</td>
<td>Proposed structural models for drug loading profiles in lipid nanoparticles</td>
<td>56</td>
</tr>
<tr>
<td>Figure 2-3.</td>
<td>Mechanisms of absorption promoting effect of lipids</td>
<td>63</td>
</tr>
<tr>
<td>Figure 3-1.</td>
<td>Chemical structure of paclitaxel</td>
<td>83</td>
</tr>
<tr>
<td>Figure 3-2.</td>
<td>Structure-activity relationships of paclitaxel</td>
<td>84</td>
</tr>
<tr>
<td>Figure 3-3.</td>
<td>Mechanism of action of Paclitaxel</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4-1.</td>
<td>Flowchart for the preparation of SLN using microemulsion technique</td>
<td>108</td>
</tr>
<tr>
<td>Figure 4-2.</td>
<td>Schematic representation of SLN preparation using solvent injection technique</td>
<td>109</td>
</tr>
<tr>
<td>Figure 4-3.</td>
<td>Flowchart for the preparation of SLN using modified solvent injection technique</td>
<td>110</td>
</tr>
<tr>
<td>Figure 4-4.</td>
<td>Flow chart for extraction of paclitaxel from SLN for entrapment efficiency determination</td>
<td>112</td>
</tr>
<tr>
<td>Figure 4-5.</td>
<td>Extraction of paclitaxel from in vitro samples prior to HPLC analysis</td>
<td>121</td>
</tr>
<tr>
<td>Figure 5-1.</td>
<td>FTIR Spectra of Paclitaxel</td>
<td>129</td>
</tr>
<tr>
<td>Figure 5-2.</td>
<td>UV Spectra of Paclitaxel</td>
<td>130</td>
</tr>
<tr>
<td>Figure 5-3.</td>
<td>DSC thermogram of Paclitaxel</td>
<td>131</td>
</tr>
<tr>
<td>Figure 5-4.</td>
<td>X-Ray diffraction pattern of paclitaxel</td>
<td>132</td>
</tr>
<tr>
<td>Figure 5-5.</td>
<td>Representative chromatogram of paclitaxel standard working solution in 50% ACN</td>
<td>134</td>
</tr>
</tbody>
</table>
Figure 5-6. Representative chromatogram of extracted blank buffer 134
Figure 5-7. Representative chromatogram of buffer spiked with paclitaxel 3.3µg/ml 135
Figure 5-8. Representative chromatogram of in vitro sample obtained after 6h 135
Figure 5-9. Representative chromatogram of extracted blank mouse plasma 136
Figure 5-10. Representative chromatogram of plasma spiked with paclitaxel 5µg/ml 136
Figure 5-11. Representative chromatogram of plasma sample obtained 6h after a 40mg/kg oral dose of paclitaxel loaded SLN 137
Figure 5-12. Representative chromatogram of liver sample obtained 6h after a 40mg/kg oral dose of paclitaxel loaded SLN 137
Figure 5-13. Representative Calibration Curve of Paclitaxel (a) in buffer and, (b) in mouse plasma 138
Figure 5-14. Effect of tripalmitin and stearic acid on particle size of SLN (n=3) 145
Figure 5-15. SEM images of drug free SLN prepared by microemulsion technique 146
Figure 5-16. Effect of total surfactant to stearic acid ratio on particle size of SLN (n=3) 146
Figure 5-17. Effect of total surfactant to tripalmitin ratio on particle size of SLN (n=3) 147
Figure 5-18. Effect of different injection volume on particle size of SLN (n=3) 151
Figure 5-19. Effect of different homogenization rates on particle size of SLN (n=3) 152
Figure 5-20. Effect of different concentrations of (a) stearic acid (SA), and (b) stearylamine (StA) on particle size and polydispersity of SLN (n=3) 154
Figure 5-21. A schematic representation of a nanoparticle with poloxamer block copolymer adsorbed onto the surface 155
via the central hydrophobic part (poly(propylene) (PO)

Figure 5-22. SEM images of drug free SLN prepared by modified solvent injection technique

Figure 5-23. Schematic representation of the liquid-liquid nucleation process or Ouzo effect

Figure 5-24. Effect of different lipid and surfactant concentration on % entrapment efficiency (EE) and % loading (n=3)

Figure 5-25. TEM images of paclitaxel loaded stearic acid-SLN (1.5% w/v poloxamer)

Figure 5-26. TEM images of paclitaxel loaded stearylamine-SLN (1.5% w/v poloxamer)

Figure 5-27. TEM images of paclitaxel loaded stearic acid-SLN (1% w/v poloxamer)

Figure 5-28. TEM images of paclitaxel loaded stearylamine-SLN (1% w/v poloxamer)

Figure 5-29. DSC thermogram of (a) stearic acid, (b) stearic acid physical mixture, and (c) paclitaxel loaded stearic acid-SLN

Figure 5-30. DSC thermogram of (a) stearylamine, (b) stearylamine physical mixture, and (c) paclitaxel loaded stearylamine-SLN

Figure 5-31. X-Ray diffraction pattern of paclitaxel-loaded stearic acid-SLN (NF1)

Figure 5-32. X-Ray diffraction pattern of paclitaxel-loaded stearylamine-SLN (NF2)

Figure 5-33. FTIR spectra of Poloxamer 188

Figure 5-34. FTIR spectra of (a) drug free stearic acid-SLN, (b) paclitaxel-loaded stearic acid-SLN

Figure 5-35. FTIR spectra of (a) drug free stearylamine-SLN, (b) paclitaxel-loaded stearylamine-SLN

Figure 5-36. In vitro drug release from PTX-StASLN and PTX-SASLN

Figure 5-37. In vitro drug release from (a) PTX-StASLN with 0.05, 0.25, 0.5 mmol paclitaxel loading, and (b) PTX-SASLN
with 0.05, 0.25, 0.5 mmol paclitaxel loading

Figure 5-38. *In vitro* drug release from (a) PTX-StASLN with 0.5, 1.0, 1.5 %w/v poloxamer, and (b) PTX-SASLN with 0.5, 1.0, 1.5 %w/v poloxamer

Figure 5-39. Particle size of surface-modified stearic acid and stearylamine lipid nanoparticles following incubation in simulated gastric medium (mean ± S.D., n=3)

Figure 5-40. Effect of storage conditions on particle size of PTX-SASLN and PTX-StASLN formulations (mean ± SD; n=3)

Figure 5-41. TEM photomicrograph of the paclitaxel loaded stearylamine SLN formulation at 4°C ± 2°C after 90 days of storage

Figure 5-42. TEM photomicrograph of the paclitaxel loaded stearylamine SLN formulation at 40°C ± 2°C/75% ± 5% RH after 15 days of storage

Figure 5-43. Effect of storage conditions on zeta potential of PTX-SASLN and PTX-StASLN formulations (mean ± SD; n=3)

Figure 5-44. Effect of storage conditions on the percentage of residual drug content of PTX-SASLN and PTX-StASLN formulations (mean ± SD; n = 3)

Figure 5-45. Plot of log % drug remaining and time for optimized paclitaxel loaded SLN formulations of (a) stearic acid, and (b) stearylamine

Figure 5-46. Effect of storage conditions on TBARS formed in various SLN formulations (mean ± SD; n = 3)

Figure 5-47. Plasma concentration time profile of paclitaxel in mice with (a) orally administered free paclitaxel and paclitaxel-SLN formulation, (b) intravenously administered free paclitaxel

Figure 5-48. Tissue concentration time profiles of paclitaxel after oral administration of (a) free paclitaxel, and (b) paclitaxel-SLN formulation

Figure 5-49. Comparative paclitaxel exposure after oral administration of free paclitaxel and paclitaxel-SLN
formulation in (a) liver, (b) lung, (c) kidney, (d) spleen and, (e) brain

Figure 5-50. Representative histopathological slides of Liver 205
Figure 5-51. Representative histopathological slides of Kidney 206
Figure 5-52. Representative histopathological slides of Spleen 207
Figure 5-53. Representative histopathological slides of Brain 208