CONTENTS

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>II.</td>
<td>CERTIFICATE</td>
<td>ii</td>
</tr>
<tr>
<td>III.</td>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>IV.</td>
<td>CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>IV.</td>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>V.</td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>The complexation phenomenon</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>The inclusion complex</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Structure and physicochemical properties of cyclodextrins</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Cyclodextrins and inclusion complexation</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Choice of an ideal candidate for inclusion complexation</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Advantages of cyclodextrin inclusion complexation</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>Factors affecting complexation phenomenon</td>
<td>9</td>
</tr>
<tr>
<td>1.8</td>
<td>Kinetics of complex formation and dissociation</td>
<td>10</td>
</tr>
<tr>
<td>1.9</td>
<td>Chemistry of cyclodextrins</td>
<td>11</td>
</tr>
<tr>
<td>2.</td>
<td>LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Cyclodextrin drug delivery systems</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Pharmacotechnical characteristics of inclusion complexes</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Use of cyclodextrin in drug delivery systems</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Highly soluble cyclodextrin derivatives: chemistry, properties and</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>trends in development</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Methods of preparing cyclodextrin inclusion complexes</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Characterization of inclusion complexes</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Rheumatic diseases-Introduction</td>
<td>35</td>
</tr>
<tr>
<td>2.8</td>
<td>Animal models for the assessment of pharmacological activity</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>of NSAIDs</td>
<td></td>
</tr>
</tbody>
</table>
2A OBJECTIVE AND WORK PLAN

2.9 Objective of the study

2.10 Rationale of the study

2.11 Choice of the drug meloxicam: A drug Profile

2.12 β-cyclodextrin: A profile

2.13 Hydroxypropyl β-cyclodextrin: A profile

2.14 Plan of work

3. EXPERIMENTAL

3.1 Materials

3.2 Instruments

3.3 Preparation of working solutions

3.4 Physical characteristics and Identification of drug: Meloxicam

3.5 Analytical methodology

3.6 Preparation of calibration curves

3.7 Phase solubility studies

3.8 Preparation of inclusion complexes

3.9 Characterization of solid inclusion complexes

3.10 Dissolution studies of solid inclusion complexes

3.11 Aqueous solubility studies

3.12 Development of tablets containing meloxicam-β-cyclodextrin/HPβ-cyclodextrin inclusion complexes

3.13 Evaluation of tablets

3.14 Release and In-vitro equivalence study

3.15 Pharmacodynamic studies

3.16 Acute toxicity studies

3.17 Sub-acute toxicity studies of the optimised inclusion complex

3.18 Stability studies on optimised tablets

3.19 In-vivo bioavailability studies in healthy human volunteers
4. RESULTS AND DISCUSSIONS

4.1 Phase solubility diagram for meloxicam-β-cyclodextrin/HPβ-cyclodextrin system ... 105
4.2 UV Studies on drug-cyclodextrin systems .. 107
4.3 Characterization of solid inclusion complexes ... 107
4.4 Dissolution studies of the inclusion complex powder 155
4.5 Aqueous solubility studies ... 174
4.6 Evaluation of tablets ... 175
4.7 Comparative release studies ... 176
4.8 Analysis of In-vitro release rate data for determining release order 181
4.9 Pharmacodynamic studies .. 189
4.10 Acute toxicity studies .. 194
4.11 Sub-acute toxicity studies ... 194
4.12 Stability studies ... 204
4.13 In-vivo bioavailability studies in healthy human volunteers 208

5. SUMMARY AND CONCLUSIONS 213

6. BIBLIOGRAPHY 217

APPENDIX – I
List of papers and presentations related to this project (Published/Accepted/Presented)

APPENDIX – II
Approval Letter from Jamia Hamdard Animal Ethics Committee

APPENDIX – III
Approval Letter from Jamia Hamdard Institutional Review Board

APPENDIX – IV
Informed Consent Form

APPENDIX – V
Case Record Form
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Characteristics of α-, β- and γ-cyclodextrins</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Complex forming ability of cyclodextrins with various guest molecules</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>List of selected drugs with improved pharmaceutical characteristics after inclusion complex formation with cyclodextrin</td>
<td>23</td>
</tr>
<tr>
<td>4.</td>
<td>Commercial pharmaceutical with cyclodextrin-based formulations</td>
<td>26</td>
</tr>
<tr>
<td>4a.</td>
<td>Commercial pharmaceuticals with cyclodextrin-based formulations in India</td>
<td>26</td>
</tr>
<tr>
<td>5.</td>
<td>Cyclodextrins in drug delivery system</td>
<td>29</td>
</tr>
<tr>
<td>6.</td>
<td>Commercial preparations of meloxicam</td>
<td>53</td>
</tr>
<tr>
<td>7.</td>
<td>λ_{max} of meloxicam in various solvents</td>
<td>68</td>
</tr>
<tr>
<td>8.</td>
<td>Absorbance values of meloxicam solutions in distilled water: Ethanol (70:30)</td>
<td>74</td>
</tr>
<tr>
<td>9.</td>
<td>Absorbance values of meloxicam solutions in distilled water containing 0.5% w/v sodium lauryl sulphate</td>
<td>74</td>
</tr>
<tr>
<td>10.</td>
<td>Absorbance values of meloxicam solutions in SGF (pH 1.2) without pepsin:ethanol (70:30)</td>
<td>75</td>
</tr>
<tr>
<td>11.</td>
<td>Absorbance values of meloxicam solution in phosphate buffer (pH 7.4)</td>
<td>75</td>
</tr>
<tr>
<td>12.</td>
<td>Area values of meloxicam solutions in methanol for HPLC</td>
<td>76</td>
</tr>
<tr>
<td>13.</td>
<td>Area values of meloxicam solutions in Triammonium citrate: Methanol: Triethylamine for HPLC (35:65:0.5)</td>
<td>76</td>
</tr>
<tr>
<td>14.</td>
<td>Quantity of meloxicam and cyclodextrin taken for various molar ratios.</td>
<td>80</td>
</tr>
<tr>
<td>15.</td>
<td>Quantities of inclusion complex equivalent to 15 mg of meloxicam</td>
<td>84</td>
</tr>
</tbody>
</table>
16. Final formula for a single 200 mg tablet containing meloxicam-β-cyclodextrin complex ...85
17. Final formula for a single 200 mg tablet containing meloxicam-HPβ-cyclodextrin inclusion complex ...86
18. Phase solubility studies of meloxicam-β-cyclodextrin system105
19. Phase solubility studies of meloxicam-HPβ-cyclodextrin system ...105
20. UV spectral data of meloxicam solution (10 μg/ml) with increasing β-cyclodextrin concentration ...107
21. UV spectral data of meloxicam solution (10 μg/ml) with increasing HPβ-cyclodextrin concentration ...107
22. Dissolution of meloxicam pure drug powder in SGF without pepsin (pH 1.2) ...155
23. Release of drug from meloxicam-β-cyclodextrin complex PM (1:1) in SGF (pH 1.2) ...155
24. Release of drug from meloxicam-β-cyclodextrin complex PM (1:2) in SGF (pH 1.2) ...155
25. Release of drug from meloxicam-β-cyclodextrin complex KN (1:1) in SGF (pH 1.2) ...156
26. Release of drug from meloxicam-β-cyclodextrin complex KN (1:2) in SGF (pH 1.2) ...156
27. Release of drug from meloxicam-β-cyclodextrin complex SD (1:1) in SGF (pH 1.2) ...156
28. Release of drug from meloxicam-β-cyclodextrin complex SD (1:2) in SGF (pH 1.2) ...157
29. Release of drug from meloxicam-β-cyclodextrin complex FD (1:1) in SGF (pH 1.2) ...157
30. Release of drug from meloxicam-β-cyclodextrin complex FD (1:2) in SGF (pH 1.2) ...157
31. Release of drug from meloxicam-HPβ-Cyclodextrin complex PM (1:1) in SGF (pH 1.2) ...158
32. Release of drug from Meloxicam-HPβ-cyclodextrin complex PM (1:2) in SGF (pH 1.2) ...158
33. Release of drug from Meloxicam-HPβ-cyclodextrin complex KN (1:1) in SGF (pH 1.2) ... 158
34. Release of drug from Meloxicam-HPβ-cyclodextrin complex KN (1:2) in SGF (pH 1.2) ... 159
35. Release of drug from Meloxicam-HPβ-cyclodextrin complex SD (1:1) in SGF (pH 1.2) ... 159
36. Release of drug from Meloxicam-HPβ-cyclodextrin complex SD (1:2) in SGF (pH 1.2) ... 159
37. Release of drug from Meloxicam-HPβ-cyclodextrin complex FD (1:1) in SGF (pH 1.2) ... 160
38. Release of drug from Meloxicam-HPβ-cyclodextrin complex FD (1:2) in SGF (pH 1.2) ... 160
39. Comparative release of drug from meloxicam-drug powder and meloxicam β-cyclodextrin complex system prepared by various methods in various molar ratios in SGF (pH 1.2) .. 161
40. Comparative release of drug from meloxicam-drug powder and meloxicam HPβ-cyclodextrin complex system prepared by various methods in various molar ratios in SGF (pH 1.2) .. 161
41. Dissolution of meloxicam pure drug powder in Phosphate buffer (pH 7.4) .. 163
42. Release of drug from meloxicam-β-cyclodextrin complex PM (1:1) in Phosphate buffer (pH 7.4) .. 163
43. Release of drug from meloxicam-β-cyclodextrin complex PM (1:2) in Phosphate buffer (pH 7.4) .. 163
44. Release of drug from meloxicam-β-cyclodextrin complex KN (1:1) in Phosphate buffer (pH 7.4) ... 164
45. Release of drug from meloxicam-β-cyclodextrin complex KN (1:2) in Phosphate buffer (pH 7.4) ... 164
46. Release of drug from meloxicam-β-cyclodextrin complex SD (1:1) in Phosphate buffer (pH 7.4) ... 164
47. Release of drug from meloxicam-β-cyclodextrin complex SD (1:2) in Phosphate buffer (pH 7.4) ... 165
48. Release of drug from meloxicam-β-cyclodextrin complex FD (1:1) in Phosphate buffer (pH 7.4) ... 165
49. Release of drug from meloxicam-β-cyclodextrin complex FD (1:2) in Phosphate buffer (pH 7.4) ...165

50. Release of drug from meloxicam-HPβ-cyclodextrin complex PM (1:1) in Phosphate buffer (pH 7.4) ...166

51. Release of drug from meloxicam-HPβ-CD complex PM(1:2) in Phosphate buffer (pH 7.4) ...166

52. Release of drug from meloxicam-HPβ-CD complex KN(1:1) in Phosphate buffer (pH 7.4) ...166

53. Release of drug from meloxicam-HPβ-CD complex KN(1:2) in Phosphate buffer (pH 7.4) ...167

54. Release of drug from meloxicam-HPβ-CD complex SD(1:1) in Phosphate buffer (pH 7.4) ...167

55. Release of drug from meloxicam-HPβ-CD complex SD(1:2) in Phosphate buffer (pH 7.4) ...167

56. Release of drug from meloxicam-HPβ-CD complex FD(1:1) in Phosphate buffer (pH 7.4) ...168

57. Release of drug from meloxicam-HPβ-CD complex FD(1:2) in Phosphate buffer (pH 7.4) ...168

58. Comparative release of drug from meloxicam drug powder and meloxicam-β-CD complex system prepared by various methods in various molar ratios in phosphate buffer (pH 7.4) ...169

59. Comparative release of drug from meloxicam drug powder and meloxicam-HPβ-CD complex system prepared by various methods in various molar ratios in phosphate buffer (pH 7.4) ...169

60. Comparative release of drug from meloxicam drug powder and meloxicam-β-CD complex system prepared by various methods in various molar ratios in distilled water containing 0.5% w/v SLS ...171

61. Comparative release of drug from meloxicam drug powder and meloxicam-HPβ-CD complex system prepared by various methods in various molar ratios in distilled water containing 0.5% w/v SLS ...171

62. Solubility data for meloxicam and meloxicam-β-CD/HPβ-CD inclusion complexes (FD, 1:2) in (pH 1.2) ...174
63. Solubility data for meloxicam and meloxicam-β-CD/HPβ-CD inclusion complexes (FD, 1:2) in (pH 7.4) ... 174

64. Evaluation of prepared tablets containing meloxicam-β-cyclodextrin inclusion complexes (FD, 1:2 complex) ... 175

65. Evaluation of prepared tablets containing meloxicam-HPβ-CD cyclodextrin inclusion complexes (FD, 1:2 complex) 175

66. Release of meloxicam from “Muvera” in SGF (pH 1.2) 176

67. Release of drug from meloxicam-β-CD tablets (FD, 1:2) in SGF (pH 1.2) ... 176

67a. Wilcoxon signed rank test for comparison of % drug release of ‘Muvera’ with optimised meloxicam-β-CD tablets (FD, 1:2) in SGF (pH 1.2) .. 177

68. Release of drug from meloxicam-HPβ-CD tablets (FD, 1:2) in SGF (pH 1.2) ... 177

68a. Wilcoxon signed rank test for comparison of % drug release of ‘Muvera’ with optimised meloxicam-HPβ-CD tablets (FD, 1:2) in SGF (pH 1.2) .. 177

69. Release of meloxicam from Muvera’ in phosphate buffer pH 7.4) .. 178

70. Release of drug from meloxicam-β-CD tablets (FD, 1:2) in phosphate buffer (pH 7.4) ... 178

70a. Wilcoxon signed rank test for comparison of % drug release of ‘Muvera’ with optimised meloxicam-β-CD tablets (FD, 1:2) in phosphate buffer (pH 7.4) .. 178

71. Release of drug from meloxicam-HPβ-CD tablets (FD, 1:2) in Phosphate buffer (pH 7.4) ... 179

71a. Wilcoxon signed rank test for comparison of % drug release of ‘Muvera’ with optimised meloxicam-β-CD tablets (FD, 1:2) in phosphate buffer (pH 7.4) .. 179

72. Analysis of in-vitro release rate data for determining release order of ‘Muvera’ in SGF without pepsin (pH 1.2) .. 181

73. Analysis of in-vitro release rate data for determining release order of meloxicam-β-CD inclusion complex (FD, 1:2) in SGF (pH 1.2) 181
74. Analysis of in-vitro release rate data for determining release order of meloxicam-HPβ-CD inclusion complex (FD, 1:2) in SGF (pH 1.2) ... 182

75. Analysis of in-vitro release rate data for determining release order of ‘Muvera’ in Phosphate buffer (pH 7.4) ... 182

76. Analysis of in-vitro release rate data for determining release order of meloxicam- β-CD inclusion complex (FD, 1:2) Phosphate buffer in (pH 7.4) ... 183

77. Analysis of in-vitro release rate data for determining release order of meloxicam-HPβ-CD inclusion complex (FD, 1:2) in Phosphate buffer (pH 7.4) ... 183

78. First order release rate constant for inclusion complexes in different dissolution media .. 188

79. The anti-inflammatory activity of meloxicam, β-CD, HPβ-CD and meloxicam-β-CD/HPβ-CD inclusion complexes (FD, 1:2) in carrageenan induced rat paw oedema (oral route) ... 189

79a. Anova single factor analysis ... 190

80. Degree of injury to the stomach of the rats .. 191

80a. Anova single factor analysis ... 192

81. Percentage mortality at different doses .. 194

82. Kidney function test values .. 194

83. Liver function test values ... 195

84. Haematological test values .. 195

85. Average weight, hardness, thickness, disintegration time and friability of optimised meloxicam-β-CD (FD, 1:2) inclusion complex tablet stored under accelerated conditions of temperature and humidity (40°C ± 0.5°C/75%±5% RH) ... 204

86. Average weight, hardness, thickness, disintegration time and friability of optimised meloxicam-HPβ-CD (FD, 1:2) inclusion complex tablet stored under accelerated conditions of temperature and humidity (40°C ± 0.5°C/75%±5% RH) ... 205

87. Drug content of optimised meloxicam-β-CD/HPβ-CD (FD,1:2) inclusion complex tablet under accelerated conditions of temperature and humidity (40°C ± 0.5°C/75% ±5% RH) ... 205
88. Degradation rate constant of optimised tablets containing meloxicam-βCD/HPβ-CD freeze dried complex (1:2) at 40°C ± 0.5°C/75% RH ±5% RH .. 206

89. Pharmacokinetic parameters of optimised tablets containing meloxicam-HPβ-CD inclusion complex (FD, 1:2) ... 209

90. Pharmacokinetic parameters of “Muvera” tablets (15 mg) 210

91. Anova single factor analysis for comparing C_{max} 211

92. Anova single factor analysis for comparing T_{max} 211

93. Anova single factor analysis for comparing AUC_{0-72} 211
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(a) Chemical structure and (b) The toroidal shape of the β-cyclodextrin molecule.</td>
<td>4</td>
</tr>
<tr>
<td>IIa</td>
<td>Representation of the 3-D structure of the CD molecule as a segment of hollow cone with a hydrophobic cavity and hydrophilic exterior.</td>
<td>5</td>
</tr>
<tr>
<td>IIb</td>
<td>Scheme illustrating the association of free cyclodextrin and drug to form a drug: CD complex.</td>
<td>5</td>
</tr>
<tr>
<td>III</td>
<td>Three complex configurations: 1:1, 1:2 and 2:1</td>
<td>6</td>
</tr>
<tr>
<td>IV</td>
<td>Theoretical phase solubility diagram</td>
<td>10</td>
</tr>
<tr>
<td>Va</td>
<td>Reference I.R. spectrum of pure meloxicam</td>
<td>67</td>
</tr>
<tr>
<td>Vb</td>
<td>I.R. spectrum of pure meloxicam</td>
<td>67</td>
</tr>
<tr>
<td>VI</td>
<td>UV absorption spectrum of meloxicam in methanol</td>
<td>70</td>
</tr>
<tr>
<td>VIIa</td>
<td>UV absorption spectrum of β-cyclodextrin in distilled water</td>
<td>71</td>
</tr>
<tr>
<td>VIIb</td>
<td>UV absorption spectrum of HPβ-CD in distilled water</td>
<td>71</td>
</tr>
<tr>
<td>VIII</td>
<td>UV absorption spectrum of meloxicam in distilled water: Ethanol (70:30)</td>
<td>72</td>
</tr>
<tr>
<td>IX</td>
<td>UV absorption spectrum of meloxicam in SGF: ethanol (70:30)</td>
<td>72</td>
</tr>
<tr>
<td>X</td>
<td>UV absorption spectrum of meloxicam in Phosphate buffer (pH 7.4)</td>
<td>73</td>
</tr>
<tr>
<td>XI</td>
<td>UV absorption spectrum of meloxicam in 0.5% SLS solution</td>
<td>73</td>
</tr>
<tr>
<td>XII</td>
<td>Calibration curve of meloxicam in distilled water: Ethanol(70:30)</td>
<td>77</td>
</tr>
<tr>
<td>XIII</td>
<td>Calibration curve of meloxicam in SGF without pepsin (pH 1.2)</td>
<td>77</td>
</tr>
<tr>
<td>XIV</td>
<td>Calibration curve of meloxicam in Phosphate buffer (pH 7.4)</td>
<td>78</td>
</tr>
<tr>
<td>XV</td>
<td>Calibration curve of meloxicam in distilled water containing 0.5% w/v SLS</td>
<td>78</td>
</tr>
</tbody>
</table>
XVI Calibration curve of meloxicam in methanol for HPLC .. 79
XVII Calibration curve of meloxicam in triammonium citrate; methanol: triethylamine for HPLC (35:65:0.5) ... 79
XVIII Phase solubility diagram for meloxicam-β-CD system .. 106
XIX Phase solubility diagram for meloxicam-HPβ-CD system .. 106
XX Differential scanning calorimetry thermograms .. 110-118
XXI X-Ray diffraction patterns ... 121-126
XXII Fourier transform Infra red spectra .. 130-138
XXIII Scanning electron micrographs .. 140-149
XXIV Nuclear magnetic resonance spectra .. 152-154
XXV Release of meloxicam from meloxicam pure drug powder and meloxicam-β-CD system prepared by various methods in different molar ratios in SGF without pepsin (pH 1.2) .. 162
XXVI Release of meloxicam from meloxicam pure drug powder and meloxicam-HPβ-CD system prepared by various methods in different molar ratios in SGF without pepsin (pH 1.2) .. 162
XXVII Release of meloxicam from meloxicam pure drug powder and meloxicam-β-CD system prepared by various methods in different molar ratios in phosphate buffer (pH 7.4) .. 170
XXVIII Release of meloxicam from meloxicam pure drug powder and meloxicam-HPβ-CD system prepared by various methods in different molar ratios in phosphate buffer (pH 7.4) .. 170
XXIX Release of meloxicam from meloxicam pure drug powder and meloxicam-β-CD system prepared by various methods in different molar ratios in distilled water containing 0.5% w/v SLS .. 172
XXX Release of meloxicam from meloxicam pure drug powder and meloxicam-HPβ-CD system prepared by various methods in different molar ratios in distilled water containing 0.5% w/v SLS .. 172
XXXI Comparison of in-vitro release of marketed formulation (Muvera, Sun Pharmaceuticals) with developed formulation in SGF without pepsin (pH 1.2) .. 180
XXXII Comparison of in-vitro release of marketed formulation (Muvera, Sun Pharmaceuticals) with developed formulation in phosphate buffer (pH 7.4) .. 180

XXXIII In-vitro release from “Muvera” tablets in SGF 184

XXXIV Log percent drug remaining versus time for “Muvera” tablets in SGF (pH 1.2).. 184

XXXV In-vitro release from “Meloxicam-β-CD (FD, 1:2) inclusion complex” tablets in SGF (pH 1.2) .. 184

XXXVI Log percent drug remaining versus time for “Meloxicam-β-CD (FD, 1:2) inclusion complex” tablet in SGF (pH 1.2) .. 185

XXXVII In-vitro release from “Meloxicam-HPβ-CD (FD, 1:2) inclusion complex” tablet in SGF (pH 1.2) .. 185

XXXVIII Log percent drug remaining versus time for “Meloxicam-HPβ-CD (FD, 1:2) inclusion complex” tablet in SGF (pH 1.2) .. 185

XXXIX In-vitro release from “Muvera” tablets in Phosphate buffer (pH 7.4) .. 186

XL Log percent drug remaining versus time for “Muvera” tablet in Phosphate buffer (pH 7.4) .. 186

XLI In-vitro release from “Meloxicam-β-CD (FD, 1:2) inclusion complex” tablet in Phosphate buffer (pH 7.4) .. 186

XLII Log percentage drug remaining versus time for “Meloxicam-β-CD (FD, 1:2) inclusion complex tablet in Phosphate buffer (pH 7.4) .. 187

XLIII In-vitro release from “Meloxicam-HPβ-CD (FD, 1:2) inclusion complex” tablet in Phosphate buffer (pH 7.4) .. 187

XLIV Log percentage drug remaining versus time for “Meloxicam-HPβ-CD (FD, 1:2) inclusion complex” tablet in phosphate buffer (pH 7.4) .. 187

XLV Anti-inflammatory studies .. 190

XLVI Ulcerogenic studies .. 193

XLVII Histopathology of Liver .. 198

XLVIII Histopathology of Kidney .. 199

XLIX Histopathology of Heart .. 200
Histopathology of Spleen .. 201

Histopathology of Stomach .. 202-203

Log present drug remaining versus time for optimised meloxicam-β-CD (FD, 1:2) tablets kept at 40°C±0.5°C, 75% ±5% RH ..207

Log present drug remaining versus time for optimised meloxicam-HPβ-CD (FD, 1:2) tablets kept at 40°C±0.5°C, 75% ±5% RH ..207

Mean plasma concentration versus time curve211