CHAPTER III

IMPULSIVE EXCITATION OF MECHANOLUMINESCEENCE IN CENTRO-
SYMMETRIC AND NON-CENTROSYMMETRIC CRYSTALS

1-1. INTRODUCTION

Since mechanoluminescence is produced during deformation of a crystal, a correlation between the PL intensity and crystal deformation is expected. Various techniques have been used to date for deforming the crystals for PL studies. In the device used by Long
champ (1972), an air blast propels crystals at high speed on a quarts plate, normally placed directly in front of the entrance slit of a spectrometer. A similar device for PL studies has also been designed by Sadoska (1969). In the spiral mill technique devised by Meyer and Ohrikat (1969), six high speed air-blasts are directed to lie along the edges of a regular hexagon. Crystals directed into the spiralling air collide with others already in the spiral. Since the fracture is produced due to impact between like materials, this technique eliminates the possibility of the effects due to contact potential differences. Meyer and Polly (1965a,b) have used a device in which a steel or sapphire needle impacts with a known energy on the crystal surface. One impact occurs per revolution of the cam in the device and the energy at the impact is controlled by varying the load on the beam. A virgin region of the crystal can be secured
for each impact by advancing the slide on which the crystal is mounted. The whole equipment can be mounted inside a vacuum chamber and the temperature of the sample can be changed by placing a heated plate beneath the sample.

A crystal milling technique has been used by Meyer et al (1970), in which the crystals were cut for the ML measurements by a rotating milling cutter. To continue the process of cutting the crystals, an arrangement is provided for pressing the crystal against the milling cutter. Alseta et al (1970) have made a device which allows the simultaneous measurements of the stress-strain characteristics and the ML-strain characteristics of a single crystal. The crystal under test is supported freely at its ends and the force is applied through a knife edge in a direction perpendicular to the axis of the crystal. The displacement of the knife edge is measured by comparing the resonance frequency of the cavity terminated with a piston connected to the arm driving the knife, with the resonance frequency of a fixed cavity. The force was measured using a quartz piezoelectric crystal.

The ML versus strain curves of crystal has been determined by Matsu et al (1957) by using a small tensile machine modified for the compression test. Butler (1966), and Chandra and Sirk (1980) have used Instron testing machine for studying the stress-strain and the ML strain curves of the crystals. Kurem and Runf (1966) have
suggested that if a periodic stress is required, then a loudspeaker or other electromagnetic device unit is very
convenient. Dever (1961) has fractured the crystals by
dropping them into liquid hydrogen. With (1937), and
Guarrero and Alvaro River (1978) have measured the ML
by deforming the crystals with a vise. Belaev et al
(1966) and Hardy et al (1979) have excited ML by defor-
mimg the crystals with laser pulses.

The superficial studies have always indicated
that the ML intensity should depend on the area of newly
created surfaces of the crystals. The effect of defor-
mation on the ML intensity of crystals has not been
studied satisfactorily to date. In the present study,
the ML is excited impulsively by dropping loads on the
crystals from different heights. The present chapter
reports the effect of impact velocity on the ML intensity
of the crystals. Only few centrosymmetrical crystals of
Tables 2-1 and 2-2 (in Chapter II), that is, NaCl, NaBr,
KCl, LiF and LiCl are chosen for the present investiga-
tion. The alkali halide crystals have been chosen because
of the availability of literatures related to their
physical properties, which may be helpful in the discuss-
ion. The impulsive excitation of ML in some of non-
centrosymmetrical molecular crystals like tartaric acid,
acetamide and ethyl stearate has also been studied, and
it is speculated that the comparative study of the ML
of centrosymmetrical and non-centrosymmetrical crystals may
be helpful in identifying the mechanism of ML excitation in centrosymmetric crystals. It has been reported that tartaric acid, acetamide and ethyl stearate crystals belong to \(P2_1 \), \(R3c \) and \(C_g \) space groups respectively, which are non-centrosymmetric (Beever et al 1982, Damay and Ondik 1972, Mathisen and Walsh 1965). These crystals exhibit intense ML and their ML spectra also resemble the spectra of the emission from the second positive group of molecular nitrogen (Chandra 1981, Chandra et al 1983). The ML efficiency of tartaric acid, acetamide and ethyl stearate crystals are 1.6, 6.4 and 3.3 times less respectively to that of sucrose crystals.

1-2. EXPERIMENTAL

The alkali halide crystals were obtained as reported in Chapter II. The crystals of tartaric acid, acetamide and ethyl stearate were grown by the slow evaporation of their aqueous solution. The crystals were made to the required size by grinding and polishing or by cleaving and polishing. The size of the crystals used in the present investigation was \(3 \times 3 \times 3 \) mm (other sizes used for some measurement were specified there). The NaCl, NaBr, KF, LiCl and LiF crystals were crushed along their (100) direction of crystallographic axis. The crystals of tartaric acid, acetamide and ethyl stearate were crushed along their \(b \), \(b \) and \(c \) directions of the crystallographic axis respectively. The crystals of NaCl, NaBr, KF, LiCl and LiF were annealed at \(450^\circ C \) for about 4 hours and cooled very slowly.
For the measurements of KL intensity at different impact velocities, a lead of particular mass and shape was dropped from different heights by using the experimental set up shown in Fig.1-1a. For the determination of the time dependence of KL, the crystal was placed on a transparent lucite plate inside a sample holder below the guided cylinder. The luminescence was monitored from below the transparent plate by using an ID21 photomultiplier tube connected to a Nystromac 115D oscilloscope having CRT P7 phosphorescent screen. In a dark room, a trace appeared on the oscilloscope screen, is visible for more than a minute. The electrical connections of the photomultiplier tube is shown in Fig.1-1b. A resistance of 34.1 kΩ is connected between the anode and the ground because it decreases the response time of the photomultiplier-detector system. The response time in the micro-second range is necessary because we are interested in measuring the pulses due to KL emission which are of less than a millisecond duration. The response time is tested by the 5 μs pulses from a xenon lamp which indicated that the response time of our photomultiplier-detector system is less than 5 μs. The response time of the photomultiplier tube can also be reduced by connecting condensers of appropriate values between the dynodes.

The crystal was covered with a thin aluminium foil and fixed with a adhesive tape. This arrangement eliminates the error in the KL intensity measurements due to the scattering of crystallite fragments during the impact.
Fig. 3-14. Schematic diagram of the experimental arrangement used for measuring the time dependence of M1 in crystals (1-Stand; 2-Muley; 3-Metallic wire; 4-Load; 5-Swiding cylinder; 6-Aluminium foil; 7-Crystal; 8-Transparent lucite plate; 9-Wooden block; 10-Photomultiplier tube; 11-Iron base mounted on a table; (Conneting wires).
Fig. 3-12. Schematic diagram of the electrical circuit used for measuring the rise and decay times of H1a.
of the load on the crystals. The aluminium foil was connected to one terminal of an 1.5 V battery which was connected to a resistance of 100 kΩ. The other end of resistance was connected to the metallic wire used for dropping the load through a frictionless pulley (Fig.1-1a). When the dropped load touched the aluminium foil on the crystal, a pulse appeared across the resistance of 100 kΩ. This pulse was used to trigger the oscilloscope. The ML intensity was monitored by the photomultiplier tube whose output was fed to one channel of the oscilloscope. For determining the rise and decay time of ML at different impact velocities, the trace on the oscilloscope screen was recorded on a tracing paper. The velocity of the load could be changed up to 400 cm/sec by changing the distance between the load to be dropped and the crystal on the lucite plate. For determining the effect of load on the ML intensity, the mass of the load to be dropped, could also be changed. Since the pulley and guided cylinder used were of negligible friction, the impact velocity, \(v_0 \) was taken as \(\sqrt{2gh} \), where \(g \) is acceleration due to gravity, and \(h \) is the height through which the piston is dropped. Furthermore, this estimation will not make any difference because we will be interested in making the relative measurements of ML.

Many workers have used the integrating sphere for the accurate measurement of the efficiency of luminescence (Perisseny and Santenman 1974, 1975, Ernest et al 1988, Brunner and Faulkner 1971). In a good integrating sphere, the following two conditions should be fulfilled:
(1) Constancy of the photomultiplier output for a
given light source when placed anywhere inside the
sphere except in direct view of the photomultiplier,
and (ii) constancy of the photomultiplier output
over a period of time during constant illumination.
For the ML measurements, no one has used to date the
integrating sphere, perhaps because of the complicated
device needed for the ML excitation. In all the works
done on ML to date, the procedure similar to that
described in the present investigation has been adopted.
It has been found that when the crystal of small cross-
sectional area as compared to the light-sensitive area
of the photomultiplier tube, is crushed close to the
photomultiplier tube, the ML intensity measured will be
proportional to the intensity of ML. Because of the
limitations of our laboratory, we were not, able to
measure the ML intensity absolutely. However, we have
normalized the ML intensity of all the crystals in terms
of the ML intensity of sucrose crystals (Chapter II).

An independent experiment was made for the
investigation of the dependence of ML on the area of
newly created surfaces of crystals. For this experiment,
the crystals were made to the required size by grinding
and polishing or by cleaving. The size of the crystals
used was 5 x 5 x 5 mm. However, the crystals used in
cutting experiments were one mm thickness. For the
ML measurements, the crystal was fractured instantane-
ously by compressing it between the two jaws of a screw
gauge. In an independent experiment the crystals were cut instantaneously by a sharp blade. In this measurement, the total ML intensity was monitored by the technique described previously in Chapter II, that is, in terms of the deflection of a ballistic galvanometer. In the cutting experiment, the area of newly created surfaces was calculated from the known dimension of the crystals. However, in the compressing experiment, the area of newly created surfaces s, is determined from the relation

$$s = 6 \left[\frac{N_1}{d} \right]^{2/3} + \frac{N_2}{d}^{2/3} + \frac{N_3}{d}^{2/3} + \frac{N_4}{d}^{2/3} \ldots \right]$$

where d is density of the crystal and s_0 is surface area of the crystal before the fracture. The crystallites formed after the fracture were divided into four groups. N_1, N_2, N_3 and N_4 denote the average mass of the crystallites of first, second, third and fourth groups respectively. N_1, N_2, N_3 and N_4 denote the total number of crystallites of the first, second, third and fourth groups respectively. The newly created area due to the formation of some fine powders is neglected.

1.3. RESULTS

The time dependence of ML of single crystals of NaF is shown in Fig. 1-2 for different impact velocities. The ML appears after the impact of piston on the crystal.
The total intensity \(I \) of an electron at the

parabola \(\frac{1}{2} (1 - \gamma) \gamma \) \(\frac{1}{2} \gamma \) \(\frac{1}{2} \gamma \)

velocity of the electron. The physical meaning of the

where \(I \) and \(\gamma \) are constants.

\[I = \gamma \quad \text{(1.2)} \]

The area of the electron

shape which represents the relation

time, and the plot of \(I \) versus \(t \) shows that for large \(t \), the

Fig. 2-2 shows that for large \(t \), the

\textit{Explanation.}

to contrast it in the time scale used in the present

critical and the appearance of \(\gamma \), but we were not able

on the

enlarged time scale between the impacts of the electron on the

various with increasing impact parameters. These may be

increase in intensity and the time correlated changes in

and then it decreases, the peak in the reversion time appears

intensity of the electron at a different and after the impact,

\"{}" not, it increases with time, except the maximum

72
halide crystals, initially increases with the impact velocity \(v_0 \) as shown in Fig. 1-4. The total ML intensity attains a saturation value for higher values of the impact velocity. Fig. 1-5 shows that for lower values of the impact velocity, the plot of \(\log(I_p) \) versus \(1/v_0 \) is a straight line with a negative slope, which suggests the relation

\[
I_T = I_T^0 \exp \left(-\frac{v_0}{v_c} \right), \quad (3.4)
\]

where \(I_T^0 \) and \(v_c \) are constants. The physical significance of these constants will be discussed later on. The value of \(v_c \) is different for different crystals and it is shown in Table 3-1.

Fig. 1-6a shows that the time \(t_p \) corresponding to the peak in the ML intensity versus time curve of NaF crystals decreases with increasing values of the impact velocity \(v_0 \). Fig. 1-6b shows that for higher values of the impact velocity, the plot of \(t_p \) versus \(1/v_0 \) is a straight line with a positive slope.

Fig. 1-7 shows the dependence of peak intensity \(I_p \) of ML intensity versus time curve of alkali halide crystals on the impact velocity \(v_0 \). It is seen that for higher values of the impact velocity, the peak intensity \(I_p \) increases linearly with the impact velocity.

The time dependence of ML in the non-centrosymmetric crystals, that is, in tartaric acid is shown in Fig. 1-8 for different values of the impact velocity. In every respect (except intensity), it is similar to that of the
centrosymmetric crystals (Fig. 2-2). The impact velocity dependence of the total ML intensity I_T of the non-centrosymmetric crystals tartaric acid, acetamide and ethyl stearate is shown in Fig. 2-9. It is seen that I_T attains a saturation value for higher values of the impact velocity. For lower values of the impact velocity, the plot of $\log I_T$ versus $1/v_o$ is a straight line (Fig.2-10), which suggests the suitability of equation (1.4) also for these crystals. Fig. 2-11 shows that the peak intensity I_p of ML intensity versus time curve of tartaric acid, acetamide, and ethyl stearate crystals, increases with the impact velocity and the increase is linear in the higher values region of the impact velocity.

Fig.3-12 shows the variation of total intensity I_T of ML with the mass of the crystals for the impact velocity 313.2 cm/sec. Fig. 3-13 shows the crystal mass dependence of the peak intensity I_p of the ML versus time curve for a constant impact velocity of 313.2 cm/sec. It is found that after a minimum size of the crystals, the total ML intensity increases linearly with the volume or mass of the crystals, and the peak of the ML intensity versus time curve increases linearly with the area of cross-section of the crystals.

Fig. 3-14 shows the dependence of total ML intensity of NaF crystals on the impact velocity, for different masses of the load dropped on the crystals. It is seen that the for higher mass of the load, the
total ML intensity attains a saturation value at lower values of the impact velocity as compared to that for lesser mass of the load.

Fig.3-15 shows the dependence of total ML intensity on the area of newly created surfaces of NaF, NaCl and tartaric acid crystals. It is seen that the total ML intensity is directly proportional to the area of the newly created surfaces, although the ML efficiency is different for different crystals.

The relative integrated intensities per gm mole of the crystals were determined at an impact velocity of 313.2 cm/sec. No significant changes in ML activity were found with respect to the crushing direction of the crystals. The NaCl, NaBr, NaF, LiCl, LiF, tartaric acid, acetamide and ethyl stearate crystals do not show ML when they are crushed in CO₂ atmosphere.

The rise and decay time of the ML from a single fracture are two orders of magnitude smaller than those observed in the experiments described above. When the oscilloscope time scale knob was kept in microsecond scale and the crystal placed on the lucite plate was fractured statically, then many pulses of microsecond duration appeared (no triggering used). This result shows that the ML pulse due to the motion of a single crack is in the microsecond range for the crystals having dimensions of few mm per edge.
Fig. 3.2: Time dependence of ML in 3x3x1 mm NaF crystals at
impact velocity of (1) 313,2 cm/sec, (ii) 242,6 cm/sec,
(iii) 177,6 cm/sec and (iv) 62,6 cm/sec.
Fig. 3-3. Plot of log I versus t, for rising and decaying portion of M., at impact velocity of (i) 313.2 cm/sec, (ii) 177.6 cm/sec, (iii) 62.6 cm/sec.
Fig. 3-4. Dependence of total ML intensity of alkali halide crystals on the impact velocity v_0 of the load, on the crystals.
Fig. 3-5. Plot of $\log I$ versus $1/V_0$ for different alkali halide crystals.
Fig. 3-6a. Dependence of the time t_m corresponding to ML intensity versus time curve on the impact velocity v_0, for NaF crystals.
Figure 1. Plot of t_0 versus $1/v_0^2$ for NaF crystals.
Fig. 3-7: Dependence of peak intensity I_m of ML intensity versus time curve of alkali halide crystals on the impact velocity v_0.

Impact Velocity (cm/sec)

Peak ML Intensity (arb. units)

- LiF
- NaF
- LiCl
- NaCl (x0.15)
- NaBr (x0.25)
Fig. 3-6. Time dependence of ML in 3x3x3 mm tarteric acid crystals at impact velocities of (i) 313.2 cm/sec., (ii) 243.6 cm/sec., (iii) 177.6 and (iv) 62.6 cm/sec.
Fig 3-9 Dependence of total ML intensity of piezoelectric crystals on the impact velocity \(v_0 \).
Figure 2: Plot of \(\log I \) versus \(1/v \) for piezoelectric crystals.
Fig. 3-11 Dependence of peak intensity I_p and intensity versus time curve of piezoelectric crystals on the impact velocity v.

- TARTARIC ACID
- ACETAMIDE
- ETHYL STEARATE
Fig. 3-12 Dependence of total intensity of ML on the mass of crystals ($v_0 = 313.2 \text{ cm/sec}$).
Fig. 3-13. Dependence of the peak intensity of NL versus time curves on the mass of the crystals (v₀ = 313.2 cm/sec).
Fig. 3.14. Dependence of total PL intensity of NaF crystals on the impact velocity for different masses of the load (curves I, II, and III correspond to 800, 600, and 200 gm of the load respectively).
Fig. 3-15. Dependence of local X-ray intensity on the area of newly created surface.
TABLE 2.1

Values of certain constants related to the impulsive excitation of ML in crystals.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Crushing direction</th>
<th>$\lambda_0(10^3)$ (for $v_0=0$)</th>
<th>$\lambda_1(10^3)$ (for $v_0=133.3$)</th>
<th>v_0 (cm/sec)</th>
<th>Normalized ML activity per mole with respect to sucrose crystals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NaCl</td>
<td>$a = b = c$</td>
<td>12.6</td>
<td>13.8</td>
<td>83.1</td>
<td>0.67x 10$^{-4}$</td>
</tr>
<tr>
<td>2. KBr</td>
<td>$a = b = c$</td>
<td>12.4</td>
<td>13.1</td>
<td>80.3</td>
<td>0.60x 10$^{-4}$</td>
</tr>
<tr>
<td>3. NaF</td>
<td>$a = b = c$</td>
<td>12.8</td>
<td>13.3</td>
<td>85.2</td>
<td>1.0 x 10$^{-3}$</td>
</tr>
<tr>
<td>4. LiF</td>
<td>$a = b = c$</td>
<td>12.9</td>
<td>13.6</td>
<td>81.3</td>
<td>1.1 x 10$^{-3}$</td>
</tr>
<tr>
<td>5. LiCl</td>
<td>$a = b = c$</td>
<td>12.4</td>
<td>13.3</td>
<td>81.7</td>
<td>0.67x 10$^{-3}$</td>
</tr>
<tr>
<td>6. Tartaric acid</td>
<td>b</td>
<td>13.10</td>
<td>17.4</td>
<td>46.5</td>
<td>0.63</td>
</tr>
<tr>
<td>7. Acetamide</td>
<td>b</td>
<td>12.00</td>
<td>16.7</td>
<td>43.4</td>
<td>0.13</td>
</tr>
<tr>
<td>8. Ethyl stearate</td>
<td>c</td>
<td>11.80</td>
<td>16.5</td>
<td>41.3</td>
<td>0.30</td>
</tr>
</tbody>
</table>
have been a subject of considerable interest. The
luminance probe of a cytochalasin

experiments. Investigation of its

exemplary importance in the further investigation of

cracks in the cytochalasins. The findings may be of cosmic

suggested to exert some deformation during the movement of

only responsible for the

occlusion process on the

area of newly created surface suggests that the inner

The inner dependence of the luminosity on the

model the cracks produced in the cytochalasins.

load on the cytochalasins should be related to the number of

time dependence of the produced during the impact of a

during the motion of many cracks in the cytochalasins. Thus,

be the superposition of individual parts produced

cracks are produced during the impact should

of microinclusions and depends on the impact velocity. Thus,

the impact of a load on the cytochalasins to the order

the time duration of a continuous pulling process produced due

necessary for a crack to move through the cytochalasins. However,

the microinclusions range, which is of the order of the time

due to the motion of a single crack to an

during the fracture of the cytochalasins. The time duration

sacrifice and each successive cytochalasin. It appears only

produce replicas of each, many, high, low, etc., to indicate that.

The MII does not appear in the variety and

2-6. DISCUSSION

27
the reorientation of non-concentrically crystalline systems may be

the and non-concentrically crystalline crystals, it is known that
the impact velocity dependence of the re of concentration-

present investigation is not able to discriminate between
the may also be due to the creation of more surface area. The
the all intensity with the increasing value of the impact velocity. The increase in
the increase in the all intensity with the impact

reorientational defects.

correlation may exist between the RI and the density of meta-
other a particular concentration
to the creation of new surface in the crystals, where
the surface during fracture. These may give a response
the occurs from a correlation between the newly created
choosen in the present investigation to extrude, thus it
preferred orientation. In addition, the RI in the crystals
not lead during their deformation in the matrices and

metastable ortho, monoclinic and orthorhombic crystalline
concentrations. However, the RI in most, many TIMPs, IIIP,
chlorides. However, free to interact with lanthanum,

1975). In these crystals, the density produced extrude
at the crystal (Zen, et al. 1979), monoclinic like as of
on the density of deformed produced during the deformation
and the concentration dependence of RI of ortho, can, and also crystalline

photoluminescence intensity of RI of ortho, can, and also crystalline
due to the piezoelectricity of the newly created surfaces (Chandrasekhar 1981). The similar impact velocity dependence of the ML of centrosymmetric and non-centrosymmetric crystals suggests that the ML excitation in centrosymmetric crystals should also be due to the electrification of the newly created surfaces. The details of the ML excitation in centrosymmetric crystals will be discussed in Chapter VI. The time dependence, impact velocity dependence, and crystal size dependence of ML will be discussed theoretically in Chapter VI, after collecting some more information in the subsequent chapters.
2.6. REFERENCES

ACIOTTA, C., CHUDACEK, I. and SCANNORRENO, R. (1970) :

BEVARE, C.A., MCDONALD, R.R., ROBERTSON, J.H. and

BELYAEV, L.M., KABATOVA, V.V., VISHEVSKII, Yu. V. and

CHANDRA, B.P., ELIAS, M., JAISWAL, A.K., and MAJUMDAR, B.

CHEM., Y., ABRAMOW, M.M., TURNER, T.S. and NELSON, C.M.
(1975) : Philos. Mag. 32, 121.

DENNIS, J. (1901) : NATURE, Lond., 64, 254.

DONNAY, J.D.H. and ONCIK, H.M. (1972) : Crystal Data
Determinative Tables Vol. I. Organic Compounds,
US Department of Commerce National Bureau of
Standards, and Joint Committee on Powder Diffraction
Standards, (USA).

FRIDEL, J. (1964) : Dislocations (Pergamon Press, New York),
p. 329.

Comm., 20, 199.
MARDY, O.A., CHANDRA, D.P., ELM, J.J., ADKINSON, A.W.,
MEYER, F.J., SCHWARTZ, H.M., LEIBER, H.A. and GIRIFALCO,
MEYER, K. and POLLY, F. (1965a): Ber. Bunsenges. 69, 244.
MEYER, K., OBRIKAT, D. and ROSSBERG, H. (1970): KRISTALL,
PELHAMMS, N. and SANTHANAM, K.S.V. (1972): Fremame, 2, 139.
Holland, Amsterdam) p. 499.
VELMURUGA, M.A., RAGHUNATHAN, V.N., CONOlOVST, E.
SPARIS, G.V., SCHEIBER, J. and BRUMMER, G., (1975):