TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLE</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>xv</td>
</tr>
<tr>
<td>ACRONYM</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 Foundry Industry 1

1.2 World Casting Production 2

1.3 Indian Metal Casting Production 7

1.3.1 Important Clusters of Foundries in India 9

1.3.2 Present Production Scenario of Indian Foundries 12

1.3.3 Growth of Indian Foundries 14

1.3.4 Export Orientation 16

1.3.5 Problems of Indian Foundry Industry 17

1.3.5.1 Supply of key inputs to the foundries 17

1.3.5.1.1 Pig Iron 18

1.3.5.1.2 Scrap 18

1.3.5.2 Energy required and its availability 19

1.3.5.2.1 Energy saving Techniques 21

1.3.5.3 Environmental Restriction by Central Pollution Control Board 22

1.3.5.4 Management of Human resources and Finance 23

1.3.5.5 Technology Innovations and up-gradation: 24

1.3.5.6 Impact of Globalization 24

1.4 Survey of Leading Indian Foundries 24

1.5 Industrial and Historical Importance of Agra 25

1.6 Problem Identification 26

1.6.1 Environmental Hazards to Taj Mahal 26

1.6.1.1 Environment problems of Agra Foundry 26

1.6.1.2 The NEERI Report 27

1.6.1.2.1 Government Measures to Protect Taj Mahal 28

1.6.1.3 Hon’ble Supreme Court’s Decision 30
1.7 Environment Friendly Suggestions made by Other Researchers 31
1.7.1 Plight of Workers in Agra Iron Foundries 34
1.7.2 Post Measures: Supreme Court’s Order 35
1.7.3 The Great Paradox 37
1.7.3.1 Lines of Action and the Consequences 37
1.8 Conclusions 38

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LITERATURE REVIEW</td>
</tr>
<tr>
<td>2.1 Classification of Literature Review 41</td>
</tr>
<tr>
<td>2.2 Foundry Industry 41</td>
</tr>
<tr>
<td>2.3 Environment and Pollution 47</td>
</tr>
<tr>
<td>2.4 Furnaces</td>
</tr>
<tr>
<td>2.4.1 Cupola 54</td>
</tr>
<tr>
<td>2.4.2 Coke-Less Cupola 56</td>
</tr>
<tr>
<td>2.4.3 Rotary Furnace 58</td>
</tr>
<tr>
<td>2.5 Energy Conservation 59</td>
</tr>
<tr>
<td>2.6 Bio-Fuel 64</td>
</tr>
<tr>
<td>2.7 Modeling 66</td>
</tr>
<tr>
<td>2.7.1 Analytical Hierarchy Process (AHP) 68</td>
</tr>
<tr>
<td>2.7.2 Fuzzy Analytical Hierarchy Process (FAHP) 69</td>
</tr>
<tr>
<td>2.7.3 Statistical Modeling 72</td>
</tr>
<tr>
<td>2.7.3.1 Regression 73</td>
</tr>
<tr>
<td>2.7.4 Artificial Neural Network (ANN) 73</td>
</tr>
<tr>
<td>2.7.5 Fuzzy Set Theory (FST) 78</td>
</tr>
<tr>
<td>2.7.5.1 Applications of Fuzzy Rule Based System 80</td>
</tr>
<tr>
<td>2.7.6 Adaptive Network based Fuzzy Inference System (ANFIS) 81</td>
</tr>
<tr>
<td>2.8 Optimization 84</td>
</tr>
<tr>
<td>2.8.1 Simulated Annealing (SA) 84</td>
</tr>
<tr>
<td>2.8.2 Evolutionary Computation Techniques 85</td>
</tr>
<tr>
<td>2.8.3 Genetic Algorithms (GA) 86</td>
</tr>
<tr>
<td>2.8.4 Guided Evolutionary Simulated Annealing (GESA) 87</td>
</tr>
</tbody>
</table>
CHAPTER 3

SURVEY OF AGRA FOUNDRIES AND EXISTING MELTING TECHNIQUE

3.1 Ambient Air Quality Standards
3.1.1 Major Pollutants Emitted in various Foundry Units
3.2 Melting Furnaces in Agra and Possible Alternatives
3.2.1 Coke Fired Cupola
3.2.1.1 Cupola Emission Data - Agra Foundries
3.2.2 Crucible Furnace
3.2.3 The Cokeless Cupola
3.2.4 Induction Furnace
3.2.5 Plasma Furnace
3.2.6 Electric Arc Furnace
3.2.7 Rotary Furnace
3.2.8 Cost Comparison of Furnace:
3.3 Selection of an Alternative Fuel for Rotary Furnace
3.3.1 History of AHP and Fuzzy AHP
3.3.1.1 Multi-Criteria Decision Making (MCDM)
3.3.1.2 Analytical Hierarchy Process (AHP)
3.3.2 Problems in AHP
3.3.3 Fuzzy Set Theory and Fuzzy AHP
3.3.3.1 Fuzzy Set Theory
3.3.3.2 Fuzzy Reasoning Model
3.3.3.3 Linguistic Variable
3.3.3.4 Membership Function
3.3.3.5 Rule Base
3.3.3.6 Fuzzification, Fuzzy Inference and Defuzzification
3.3.3.7 Fuzzy Numbers
3.3.4 Selection of Appropriate Fuel using FAHP
3.3.4.1 Selection Parameters
3.3.4.2 Concept, Methodology and Analysis
3.3.4.2.1 Synergism of Fuzzy and AHP: Methodology
3.3.4.2.2 Fuel Selection Problem Analysis
3.4 Conclusion
CHAPTER 4

FURNACE MODIFICATION AND EXPERIMENTAL EVALUATIONS

4.1 Modified Rotary Furnace

4.1.1 Description of Furnace

4.1.1.1 Construction details

4.1.1.2 Brick Lining

4.1.2 Melting Operation

4.1.2.1 Preheating of oil and furnace

4.1.3 Heat Recovery Devices

4.1.3.1 Recuperators

4.1.3.2 The Heat Exchanger

4.1.3.3 Types of Heat Exchanger

4.1.3.3.1 Multipass Counter Flow Heat Exchanger (Shell and Tube Type)

4.1.3.3.2 Compact Heat Exchanger

4.1.3.4 Selection of Heat Exchanger

4.1.3.5 Design of Multipass counter flow (shell & tube type) Heat Exchanger-

4.1.3.6 Design of Compact Heat Exchanger

4.1.3.6.1 DESIGN PARAMETERS

4.1.3.7 Comparison of compact (cross flow) and multipass (counter flow heat exchanger)

4.1.4 Effect of refractory of the furnace

4.2 Performance

4.2.1 Control of Combustion

4.2.1.1 Selection of Burner

4.2.1.1.1 Efficient Heat Distribution from Burner

4.2.1.1.2 Self-Designed Burner

4.2.1.1.3 Salient Features of Self Designed Burner

4.2.1.1.4 Burner Shapes

4.2.1.1.4.1 Burner Shape and Speed of Rotation

4.2.1.2 Melting Rate and Rate of Fuel Consumption

4.2.2 Temperature Control

4.2.2.1 Effect of change of parameter on performance of Rotary furnace

4.2.2.2 Excess Air

4.2.2.2.1 Effect of excess air on performance of furnace

4.2.2.2.2 Flame Temperature at various Preheat Air Temperature and Percentages of Excess Air with various levels of blending
4.3 Quality and Environment 180
4.3.1 Air Pollution at Various Levels of Blending 180
4.3.2 Properties of Castings 187
4.3.2.1 Alloving Elements and Impurities 187
4.3.2.1.1 Silicon 187
4.3.2.1.2 Sulphur 187
4.3.2.1.3 Manganese 187
4.3.2.1.4 Phosphorus 188
4.3.2.1.5 Molybdenum 188
4.3.2.1.6 Nickel 188
4.3.2.2 Properties of Grey Cast Iron Castings 188
4.3.2.3 Spheroidal Graphite Cast Iron 190
4.3.2.3.1 Properties of Spheroidal Grey Cast Iron Castings 191
4.3.3 Microstructure Analysis 194
4.3.3.1 Phase/Volume Fraction 194
4.3.3.2 Grain Size Measurement 195
4.3.3.3 Nodularity Measurement 195
4.3.3.4 Graphite Flakes Measurement 196
4.3.3.5 Inclusion Analysis 199
4.4 Cost 201
4.4.1 Initial, Operating and Maintenance Cost 201
4.4.1.1 Fuel Consumption 201
4.4.1.1.1 Effect of Burner Shape 201
4.4.1.1.2 Excess Air 202
4.4.1.1.3 Rotational Speed 202
4.4.1.1.4 Melting Rate 202
4.4.1.2 Labour Cost 203

CHAPTER 5

MODELING AND OPTIMIZATION 211
5.1 Soft Computing Techniques 212
5.2 Regression Modeling 214
5.3 Neural Networks For Estimation 217
5.3.1 Artificial Neural Networks (ANN) 217
5.3.2 Back Propagation Neural Networks 219
5.3.2.1 Levenberg-Marquardt (LM) Approximation
5.3.3 ANN in Foundry Technology
5.3.4 Development of ANN Model For Rotary Furnace Parameters
5.3.4.1 ANN Model for Flame Temperature
5.3.4.2 ANN Model for Fuel Consumption
5.3.4.3 ANN Model for Melting Rate
5.3.4.4 Evaluation from ANN Model
5.4 Neuro-Fuzzy Modeling
5.4.1 Neuro-Fuzzy Systems
5.4.2 Architecture of ANFIS
5.4.3 Neuro-Fuzzy Modeling of Rotary Furnace Parameters
5.4.4 Simulation Results
5.4.5 Conclusion
5.5 Optimization
5.5.1 Simulated Annealing
5.5.2 Evolutionary Computing Techniques
5.5.2.1 Working Principle of an Evolutionary Algorithms
5.5.2.2 Genetic Algorithms
5.5.2.2.1 Main Components of GA
5.5.3 Guided Evolutionary Simulated Annealing
5.5.3.1 The GESA algorithm
5.5.3.2 Application of GESA for Optimizing Rotary Furnace Parameters
5.5.3.3 Applications of GESA
5.5.3.4 Validation of Experimental Results Using GESA
5.5.4 Optimizing Process Parameters Using Interactive ANN Approach
5.5.4.1 ANN Application for Rotary Furnace Parameters
5.5.4.1.1 Training phase
5.5.4.1.2 Testing phase
5.5.4.1.3 Simulation Phase
5.5.4.1.4 Training, Testing and Simulating Artificial Neural Network
5.5.4.1.5 Train the network for Rotary furnace.
5.5.4.2 Results and Discussion
5.5.4.3 Conclusion
CHAPTER 6

ECONOMIC EVALUATION OF MELTING FURNACES FOR FERROUS FOUNDRIES
6.1 Economics of Melting Operation 275
6.2 Economic Analysis of Coke Fired Cupola 276
6.3 The Cokeless Cupola 278
6.3.1 Economic Analysis of Coke-Less Cupola (L.D.O. Fired) 278
6.3.2 Economic Analysis of Coke-Less Cupola (Gas Fired) 279
6.4 Economic Analysis of Rotary Furnace 280
6.5 Comparative Evaluation of Cost 281
6.6 Conclusions 281

CHAPTER 7

CONCLUSIONS
7.1 7.1 Contribution of the Thesis 283
7.2 7.2 RESULTS 285
7.2.1 7.2.1 Innovative Features 289
7.2.2 7.2.2 Applications Potential 289
7.2.2.1 7.2.2.1 Long Term 290
7.2.2.2 7.2.2.2 Immediate 290
Future Scope of Work 291

References 293

Appendix A

Experimental Data using Bio-Diesel blended with LDO A.1

Appendix B

EXPERIMENTAL EVALUATIONS USING GAS AS FUEL B.1
B.1 Results of specimen of Grey Cast Iron with Gas as fuel for furnace B.7
B.2 Burning Losses for Gas as Fuel B.8
B.3 Comparison of Pollution levels of Natural gas and Bio-fuel B.9
Appendix C

STATISTICAL ANALYSIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 Regression Analysis</td>
<td>C.1</td>
</tr>
<tr>
<td>C.1.1.1 Regression Analysis for R.P.M.</td>
<td>C.2</td>
</tr>
<tr>
<td>C.1.1.2 Regression Analysis for MT</td>
<td>C.5</td>
</tr>
<tr>
<td>C.1.1.3 Regression Analysis for FT</td>
<td>C.8</td>
</tr>
<tr>
<td>C.1.1.4 Regression Analysis for EA</td>
<td>C.11</td>
</tr>
<tr>
<td>C.1.2 Test of Significance for RPM</td>
<td>C.14</td>
</tr>
<tr>
<td>C.1.2.1.1 Summary Statistics</td>
<td>C.14</td>
</tr>
<tr>
<td>C.1.2.2 Calculations of Degrees of Freedom and Standard Error</td>
<td>C.15</td>
</tr>
<tr>
<td>C.1.2.3 Test of significance</td>
<td>C.16</td>
</tr>
<tr>
<td>C.1.3 Test of Significance for PAT</td>
<td>C.18</td>
</tr>
<tr>
<td>C.1.3.1.1 Summary Statistics</td>
<td>C.18</td>
</tr>
<tr>
<td>C.1.3.2 Calculations of degrees of freedom Standard Error</td>
<td>C.19</td>
</tr>
<tr>
<td>C.1.3.3 Test of significance</td>
<td>C.20</td>
</tr>
<tr>
<td>C.1.4 Test of Significance for FT</td>
<td>C.22</td>
</tr>
<tr>
<td>C.1.4.1.1 Summary Statistics</td>
<td>C.22</td>
</tr>
<tr>
<td>C.1.4.2 Calculations of Degrees of Freedom Standard Error</td>
<td>C.22</td>
</tr>
<tr>
<td>C.1.4.3 Test of Significance</td>
<td>C.23</td>
</tr>
<tr>
<td>C.1.5 Test of Significance for EA</td>
<td>C.25</td>
</tr>
<tr>
<td>C.1.5.1.1 Summary Statistics</td>
<td>C.25</td>
</tr>
<tr>
<td>C.1.5.2 Calculations of degrees of freedom Standard Error</td>
<td>C.25</td>
</tr>
<tr>
<td>C.1.5.3 Test of significance</td>
<td>C.26</td>
</tr>
</tbody>
</table>

Appendix D

ELABORATE DESIGN OF MULTIPASS COUNTER FLOW HEAT EXCHANGER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1 Design of Multipass counter flow (shell &tube type) heat exchanger</td>
<td>D.1</td>
</tr>
<tr>
<td>D.2 Design parameters</td>
<td>D.1</td>
</tr>
</tbody>
</table>

Brief Resume of Research Scholar