CHAPTER 1 Introduction
Problem undertaken

CHAPTER 2 Theoretical Models
2.1 Basic Theories
2.1.1 Models for systems involving transfer of charge (energy band model)
 i) Schön-Klasens model
 ii) Lambe-Klick Model
 iii) Donor-acceptor Model
 iv) Ligand field band Model
2.1.2 Models for systems involving absorption and emission processes in simple centres.
 i) Configuration coordinate Model
 ii) Continuous dielectric Models
2.1.3 Models for systems involving energy transfer with no movement of charges.
 i) Cascade mechanism
 ii) Resonance transfer mechanism
 iii) Excitation migration mechanism
2.2 Mechanism of photoconductivity

2.2.1 Absorption and excitation

i) Absorption due to presence of imperfection

ii) Excitation of crystal vibrations

iii) Formation of excitons

iv) Free-Carrier absorption

v) Excitation across the gap

2.2.2 Traps and trapping

i) General

ii) Slow growth

iii) Increased decay rate

iv) Rise and decay transients

2.2.3 Recombination process

ia) Recombination through an imperfection

ib) Direct recombination

ii) Dissipation of energy

2.3 Mechanism of Electroluminescence

2.3.1 Excitation process

i) Field ionisation of valence electrons and impurities

ii) Injection mechanism

ia) Schottky barriers
2.3.2 Transportation process

2.3.3 De-excitation process

CHAPTER 3 Experimental details

3.1 Preparation of materials

3.1.1 Preparation of Photoconductors

i) Powders

ia) Powder firing techniques

ib) Hydrothermal synthesis

ii) PC layers

ib) Sintered layers

ib) Chemically deposited layers

iic) Evaporated layers

iid) Some other methods

iii) Sintered pellets

iv) Single crystals

v) Other structures

vi) Present method of preparation
3.1.2 Preparation of electro-
numinescent materials
i) Powder phosphors
ii) Crystals
iii) Thin films
iv) Other structures
v) Present method of
preparation

3.2 Preparation of Cell
3.2.1 PC Cell
3.2.2 EL Cell
PL Cell
3.2.3 Preparation of conducting
glass plate

3.3 Measuring arrangements
3.3.1 PC studies
i) Rise and decay studies
ii) PC Spectral studies
3.3.2 EL Studies
i) EL Brightness studies
ii) EL Spectral studies
3.3.3 PL Studies
3.3.4 Correction of EL & PL
Spectra
3.3.5 Correction of PC excitation
spectra
CHAPTER 4 Photoconductivity rise and decay studies

4.1 Introduction

4.2 Experimental results

4.2.1 Dark Current

4.2.2 Photocurrent (Rise and Decay characteristics)

i) Temperature of preparation

ii) Atmosphere during preparation

iii) Ratio of base materials

iv) Flux concentration

v) Rare Earth (La or Dy) Concentration

vi) Applied voltage

vii) Intensity of excitation

viii) Ambient temperature

ix) Ambient Pressure

x) Electrode effect

xi) Cell thickness

4.3 Discussions

4.3.1 Origin of photo and dark currents

4.3.2 Analysis of photoconductivity decay curves
CHAPTER 5
Photosensitivity and photoconductivity spectral studies

5.1 Introduction

5.2 Experimental results

5.2.1 Relative photosensitivity factor

5.2.2 Photoconductivity spectral studies

5.3 Discussions
6.1 Introduction

6.2 Results and discussions

6.2.1 PL and EL brightness & spectra as a function of additives

6.2.2 EL brightness as a function of applied voltage

6.2.3 EL brightness as a function of frequency of the applied field

Table 6.1 Peak positions in spectra of different EL materials

Table 6.2 Values of constants Bo and b for different EL materials.

Future scope of the work

References