CONTENT

List of Abbreviations	I
List of Figures	III
List of Photographs	VI
List of Tables	VIII

1. Introduction

1.1 Nutraceutical and Functional Food

1.1.1 Fermented Functional Food

1.2. Angkak (Chinese Fermented Rice)

1.3. References

2. Review of Literature

2.1. Fermented Functional Food

2.1.1. Chinese Fermented Foods

2.2. Angkak (A Chinese Functional Food)

2.2.1. Historical Background

2.2.2. Fermentative Production

2.2.3. Micro Flora in Angkak

2.2.4. Production of Angkak by Solid-State Fermentation

2.2.5. Chemical Constituents of Angkak

2.2.6. Mycotoxin of Monascus

2.2.6. Bioactivity of Angkak

2.3. References

3. Objectives & Rationale

3.1. Objectives

3.2. Rationale
4. Experimental 38-65
 4.1 Materials 38
 4.2 Methods 40
 4.2.1. Angkak Production by Monoculture 40
 4.2.2. Angkak Production by Co-culture 48
 4.2.3. Change of Mycotoxin (Citrinin) Concentration in Angkak 56
 4.2.4. Pharmacological Activity of Angkak 58
 4.3. References 63

5. Results 66-150
 5.1. Analysis of Lovastatin in Angkak Sample 66
 5.2. Angkak Production by Monoculture 69
 5.3. Angkak Production by Co-culture 89
 5.4. Change of Mycotoxin (Citrinin) Concentration in Angkak 115
 5.5. Pharmacological Activity of Angkak 129

6. Discussion 151-170
 6.1. Angkak Production under Monoculture Condition 151
 6.2. Angkak Production under Co-culture Condition 154
 6.3. Change of Mycotoxin (Citrinin) Concentration during Fermentation 157
 6.4. Anti Hyperlipidemic Effect of Angkak in Animal Model 160
 6.5. Findings of Research Study 162
 6.6. References 167

7. Conclusion and Future Prospects 171-172

8. Appendices 174-176

List of Publications 177
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.D.</td>
<td>After Death</td>
</tr>
<tr>
<td>AI</td>
<td>Atherogenic Index</td>
</tr>
<tr>
<td>AIN</td>
<td>American Institute of Nutrition</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>amu</td>
<td>Atomic Mass Unit</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>B.C.</td>
<td>Before Christ</td>
</tr>
<tr>
<td>BCRC</td>
<td>Bioresource Collection and Research Center</td>
</tr>
<tr>
<td>CCRC</td>
<td>Culture Collection and Research Center</td>
</tr>
<tr>
<td>CGMCC</td>
<td>China General Microbiological Culture Collection Center</td>
</tr>
<tr>
<td>CK Serum</td>
<td>Creatinine Kinase</td>
</tr>
<tr>
<td>CPCSEA</td>
<td>Committee for the Purpose of Control and Supervision on Experiments on Animals</td>
</tr>
<tr>
<td>DOI</td>
<td>Digital Object Identifier</td>
</tr>
<tr>
<td>DSM</td>
<td>Deutsche Sammlung von Mikroorganismen</td>
</tr>
<tr>
<td>FIM</td>
<td>Foundation for Innovation in Medicine</td>
</tr>
<tr>
<td>FMD</td>
<td>flow-mediated vasodilation</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-aminobutyric acid</td>
</tr>
<tr>
<td>GRAS</td>
<td>Generally Regarded As Safe</td>
</tr>
<tr>
<td>HDLc</td>
<td>High-Density Lipoprotein Cholesterol</td>
</tr>
<tr>
<td>HMG-CoA reductase</td>
<td>3-hydroxy-3-methylglutaryl coenzyme A reductase</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>hs-CRP</td>
<td>High-sensitivity C-reactive protein</td>
</tr>
<tr>
<td>ID</td>
<td>Internal Diameter</td>
</tr>
<tr>
<td>IFFI</td>
<td>Institute of Food and Fermentation Industry</td>
</tr>
<tr>
<td>IFO</td>
<td>Institute for Fermentation, Osaka</td>
</tr>
<tr>
<td>IMTECH</td>
<td>Institute of Microbial Technology</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemist</td>
</tr>
<tr>
<td>LD</td>
<td>Lethal Dose</td>
</tr>
<tr>
<td>LDLc</td>
<td>Low-Density Lipoprotein Cholesterol</td>
</tr>
<tr>
<td>Code</td>
<td>Full Form</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>MTCC</td>
<td>Microbial Type Culture Collection</td>
</tr>
<tr>
<td>NIN</td>
<td>National Institute of Nutrition</td>
</tr>
<tr>
<td>NJ</td>
<td>New Jersey</td>
</tr>
<tr>
<td>NRRL</td>
<td>Northern Regional Research Laboratory</td>
</tr>
<tr>
<td>NTU</td>
<td>National Taiwan University</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>PDB</td>
<td>Potato Dextrose Broth</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene Glycol</td>
</tr>
<tr>
<td>RFR</td>
<td>Red Fermented Rice</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>RT</td>
<td>Retention Time</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error Mean</td>
</tr>
<tr>
<td>SGOT</td>
<td>Serum Glutamic Oxaloacetic Transaminase</td>
</tr>
<tr>
<td>SGPT</td>
<td>Serum Glutamic Pyruvic Transaminase</td>
</tr>
<tr>
<td>TC</td>
<td>Total Cholesterol</td>
</tr>
<tr>
<td>TG</td>
<td>Total Triglyceride</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>VVM</td>
<td>Air Volume, per liquid media Volume, Per Minute</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1. Production of red yeast rice in ancient China According to Tien Kyoung Kai Wu.

Figure 5.1. HPLC chromatogram of standard lovastatin at 235 nm

Figure 5.2. HPLC chromatogram of angkak sample at 235 nm

Figure 5.3. Regression plot of standard lovastatin

Figure 5.4. Graph showing percent contribution and effect of factors used Plackett-Burman design (mono culture system).

Figure 5.5 (a-f). The response surface plots with contours (medium optimization under monoculture system)

Figure 5.6 (a-f). The response surface plots with contours (process optimization under monoculture system)

Figure 5.7. Graph showing percentage of contribution of medium variables used Plackett-Burman design (co-culture system).

Figure 5.8 (a-f). The response surface plots (medium optimization under co-culture system)

Figure 5.9 (a-f). The response surface plots with contours (medium optimization at new level under co-culture system)

Figure 5.10 (a-f). The response surface plots with contours (process optimization under co-culture system)

Figure 5.11. HPLC chromatogram of standard citrinin sample at 340 nm

Figure 5.12. HPLC chromatogram of angkak sample at 340 nm

Figure 5.13. Regression plot for standard citrinin

Figure 5.14. Change of citrinin and lovastatin in control fermentation (without fatty acids in medium) under monoculture

Figure 5.15. Change of citrinin and lovastatin in control fermentation (without fatty acids in medium) under co-culture

Figure 5.16. Kinetics of lovastatin and citrinin formation during solid-state fermentation in medium containing 3% and 5% octanoic acid.

Figure 5.17. Kinetics of lovastatin and citrinin formation during
LIST OF FIGURES

Figure 2.1. Production of red yeast rice in ancient China According to Tien Kyng Kai Wu.

Figure 5.1. HPLC chromatogram of standard lovastatin at 235 nm
Figure 5.2. HPLC chromatogram of angkak sample at 235 nm
Figure 5.3. Regression plot of standard lovastatin
Figure 5.4. Graph showing percent contribution and effect of factors used Plackett-Burman design (mono culture system).
Figure 5.5 (a-f). The response surface plots with contours (medium optimization under monoculture system)
Figure 5.6 (a-f). The response surface plots with contours (process optimization under monoculture system)
Figure 5.7. Graph showing percentage of contribution of medium variables used Plackett-Burman design (co culture system).
Figure 5.8 (a-f). The response surface plots (medium optimization under co-culture system)
Figure 5.9 (a-f). The response surface plots with contours (medium optimization at new level under co-culture system)
Figure 5.10 (a-f). The response surface plots with contours (process optimization under co-culture system)
Figure 5.11. HPLC chromatogram of standard citrinin sample at 340 nm
Figure 5.12. HPLC chromatogram of angkak sample at 340 nm
Figure 5.13. Regression plot for standard citrinin
Figure 5.14. Change of citrinin and lovastatin in control fermentation (without fatty acids in medium) under monoculture
Figure 5.15. Change of citrinin and lovastatin in control fermentation (without fatty acids in medium) under co-culture
Figure 5.16. Kinetics of lovastatin and citrinin formation during solid-state fermentation in medium containing 3% and 5% octanoic acid.
Figure 5.17. Kinetics of lovastatin and citrinin formation during
solid-state fermentation in medium containing 5% oleic acid and octadecanoic acid.

Figure 5.18. Kinetics of lovastatin and citrinin formation during solid-state fermentation in medium containing 3% and 5% decanoic acid.

Figure 5.19. Kinetics of lovastatin and citrinin formation during solid-state fermentation in medium containing 3% and 5% hexanoic acid.

Figure 5.20. Change of body weight (g) of rats during experimental period

Figure 5.21. Comparison of serum total cholesterol (mg/dl) level of hypercholesterolemia controls groups G3 (I), groups G3 (III) animals fed with angkak 1 (1g/kg) and group G3 (VIII) animal fed with standard drug lovastatin (10mg/kg) during treatment period.

Figure 5.22. Comparison of serum total triglyceride (mg/dl) level of hypercholesterolemia controls groups G3 (I), groups G3 (III) animals fed with angkak 1 (1g/kg) and group G3 (VIII) animal fed with standard drug lovastatin (10mg/kg) during treatment period.

Figure 5.23. Comparison of serum low density lipoprotein LDLc (mg/dl) level of hypercholesterolemia controls groups G3 (I), groups G3 (III) animals fed with angkak 1 (1g/kg) and group G3 (VIII) animal fed with standard drug lovastatin (10mg/kg) during treatment period.

Figure 5.24. Atherogenic index of plasma (AIP) of different animal groups after the treatment period.

Figure 5.25. Histopathological section of lungs (100X) of rat belonging to group G3 (V), where A, AL, B, BC, SB, RD represents artery, alveoli, bronchiole, bronchial cartilage, small bronchus and respiratory duct, respectively.

Figure 5.26. Histopathological section of lungs (100X) of rat belonging to group G3 (I), where A, B, SB, RD represents artery, bronchiole, small bronchus and respiratory duct, respectively.

Figure 5.27. (400X) Histopathological section of lungs of rat, belonging to group G3 (I), showing normal alveolus and respiratory duct (RD).
Figure 5.28. (100X) Histopathological section of lungs of rat belonging to group G3 (VII), where B, BC, SB, RD represents bronchiole, bronchial cartilage, small bronchus and respiratory duct, respectively.

Figure 5.29. (400 X) Histopathological section of lungs of rat belonging to group G3 (VII), where BL, AAS represents bronchiole lumen and alveolar air space, respectively.

Figure 5.30. (100 X) Histopathological section of abdominal skeletal muscle of rat belonging to group G3 (I), where A, DF-CT, SM represents adipose tissue, dense fibrous connective tissue and skeletal muscle, respectively.

Figure 5.31. (400 X) Histopathological section of abdominal skeletal muscle of rat belonging to group G3 (I), where A, DF-CT, SM represents adipose tissue, dense fibrous connective tissue and skeletal muscle, respectively.

Figure 5.32. (100 X) Histopathological section of abdominal skeletal muscle of rat belonging to group G3 (VIII), where DF-CT; SM represents dense fibrous connective tissue and skeletal muscle, respectively.

Figure 5.33. (400 X) Histopathological section of abdominal skeletal muscle of rat belonging to group G3 (VIII), where DF-CT; SM represents dense fibrous connective tissue and skeletal muscle, respectively.

Figure 5.34. (100 X) Histopathological section of abdominal skeletal muscle of rat belonging to group G3 (III), where A, DF-CT, SM represents adipose tissue, dense fibrous connective tissue and skeletal muscle, respectively.

Figure 5.35. (400 X) Histopathological section of abdominal skeletal muscle of rat belonging to group G3 (III), where DF-CT; SM represents dense fibrous connective tissue and skeletal muscle, respectively.

Figure 5.36. (100 X) Histopathological section of renal cortex of rat belonging to group G3 (VII), where C, RC, G represents capsule, renal corpuscles and glomerulus, respectively.

Figure 5.37. (400 X) Histopathological section of renal cortex of rat belonging to group G3 (VII), where G, BS, P, D represents glomerulus, Bowman's space, proximal tubule and distal tubules, respectively.
Figure 5.38. (100 X) Histopathological section of renal medulla of rat belonging to group G3 (VII), where T represents renal tubules, all tubules are approximately parallel. The larger tubules in this image are collecting ducts. The smaller tubules are loop of henle.

Figure 5.39. (400 X) Histopathological section of renal medulla of rat belonging to group G3 (VII), where cd, dt, ts represents collecting duct, distal tubule, and loop of henle, respectively.

Figure 5.40. (100 X) Histopathological section of renal cortex of rat belonging to group G3 (V), where RC and G represents renal corpuscles and glomerulus respectively.

Figure 5.41. (400 X) Histopathological section of renal cortex of rat belonging to group G3 (V), where G, BS, p, d and md represents glomerulus, Bowman’s space, proximal tubule, distal tubules and macula densa, respectively.

Figure 5.42. (400 X) Histopathological section of renal medulla of rat belonging to group G3 (V), where cd, dt, ts represents collecting duct, distal tubule and loop of henle, respectively.

Figure 5.43. (100 X) Histopathological section of liver lobule of rat belonging to group G3 (V), where CV and S represents central vein and sinusoids, respectively.

Figure 5.44. (400 X) Histopathological section of liver lobule of rat belonging to group G3 (V), where CV, S and HC represents central vein, sinusoids and hepatocytes, respectively.

Figure 5.45. (400 X) Histopathological section of liver portal area (portal triads) of rat belonging to group G3 (V), where PV, BD, HA represents portal vein, bile duct and hepatic artery, respectively.

Figure 5.46. (100 X) Histopathological section of liver lobule of rat belonging to group G3 (VII), where CV and S represents central vein and sinusoids, respectively.
Figure 5.47. (400 X) Histopathological section of liver lobule of rat belonging to group G3 (VII), where CV and S represents central vein and sinusoids, respectively.

Figure 5.48. (400 X) Histopathological section of liver portal area (portal triads) of rat belonging to group G3 (VII), where PV, BD, HA, CT represents portal vein, bile duct hepatic artery and connective tissue, respectively.

LIST OF PHOTOGRAPHS

Photograph 5.1. Angkak produced by *Monascus purpureus* MTCC 369 under monoculture in 14\(^{th}\) day (a) and in 18\(^{th}\) day (b) of solid-state fermentation in rice based medium.

Photograph 5.2. Angkak produced by *Monascus ruber* MTCC 1880 and *Monascus purpureus* MTCC 369 under co-culture in 14\(^{th}\) day (a) and in 18\(^{th}\) day (b) of solid-state fermentation in rice based medium.

Photograph 5.3. Angkak produced by *Monascus purpureus* MTCC 369 under monoculture in 11\(^{th}\) day of solid-state fermentation in rice based medium containing 5% decanoic acid.
Table 2.1. Major components of angkak
Table 4.1. Plackett-Burman experimental design of 12 trials for eleven variables (monoculture).
Table 4.2. Concentrations of variables per liter of liquid medium at different levels in Plackett-Burman design for solid-state fermentation (mono culture).
Table 4.3. Levels of nutrient parameters used in experiment for Box-Behnken’s response surface design.
Table 4.4. Box-Behnken’s response surface design for four medium parameters (mono culture).
Table 4.5. Levels of process parameters used in response surface experiment.
Table 4.6. Box-Behnken’s response surface design for four process parameters.
Table 4.7. Plackett-Burman experimental design of 12 trials for eleven variables (co culture).
Table 4.8. Concentrations of variables per liter of liquid medium at different levels in Plackett-Burman design for solid-state fermentation.
Table 4.9. Levels of nutrient parameters used in Box-Behnken’s response surface design (co culture).
Table 4.10. Box-Behnken’s response surface design for four medium parameters (co culture).
Table 4.11. New levels of nutrient parameters used in experiment.
Table 4.12. Box-Behnken’s response surface design for four medium parameters at new levels.
Table 4.13. Levels of process parameters used in experiment (co culture).
Table 4.14. Box-Behnken’s response surface design for four process parameters (co culture).
Table 4.15. High fat rat diet formula (per 857.48 g of diet)
Table 5.1. Plackett-Burman experimental design of 12 trials for eleven variables (9 nutrients + 2 dummy) along with observed concentration of lovastatin in angkak samples.
Table 5.2. Influence of medium variables on lovastatin production in angkak samples.

Table 5.3. Box-Behnken design with result (actual and predicted) for monoculture system.

Table 5.4. Analysis of variance of calculated model and residual for lovastatin production.

Table 5.5. Box-Behnken design of process parameters with actual and predicted value of lovastatin in monoculture.

Table 5.6. Analysis of variance of calculated model for process parameters influencing lovastatin production.

Table 5.7. Plackett-Burman experimental design of 12 trials for eleven variables (9 nutrients + 2 dummy) along with observed concentration of lovastatin in angkak samples produced under co culture system.

Table 5.8. Influence of medium variables on lovastatin production in angkak samples produced under co culture system.

Table 5.9. Box-Behnken design of nutrient variables with lovastatin concentration (actual and predicted) in co culture system.

Table 5.10. Analysis of variance of calculated model for nutrient variables for lovastatin production in co culture system.

Table 5.11. Box-Behnken design with result (actual and predicted) with new level of medium.

Table 5.12. Results of Analysis of variance of calculated model for lovastatin production at new level of medium.

Table 5.13. Box-Behnken design for process parameters with lovastatin concentration (actual and predicted) under co – culture system.

Table 5.14. Results of the analysis of variance of calculated model of process parameters for lovastatin production in co-culture system.

Table 5.15. Change of citrinin and lovastatin in control fermentation (with out fatty acids in medium) under monoculture.
Table 5.16. Change of citrinin and lovastatin in control fermentation (with out fatty acids in medium) under co-culture.

Table 5.17. Solid-state fermentation with octanoic acid under monoculture

Table 5.18. Solid-state fermentation with oleic acid under monoculture

Table 5.19. Solid-state fermentation with octadecanoic acid under monoculture

Table 5.20. Solid-state fermentation with decanoic acid under monoculture

Table 5.21. Solid-state fermentation with hexanoic acid under monoculture

Table 5.22. The body weights of experimental rats

Table 5.23. Levels of total cholesterol (TC), total triglyceride (TG), HDLc and LDLc in serum of rats in various groups during disease induction period

Table 5.24. Levels of total cholesterol (TC), total triglyceride (TG), HDLc and LDLc in serum of rats in various groups during treatment period

Table 5.25. Effect of angkak on liver profile, serum creatinine kinase and serum creatinine level on different animal groups

Table 5.26. Atherogenic index of plasma (AIP) of different animal groups after the treatment period