LIST OF FIGURES

Figure 1.1. The electromagnetic spectrum
Figure 1.2. Penetrating power of alpha, beta and gamma rays
Figure 1.3. Sources of radiation exposure to living beings
Figure 1.4. Direct and indirect effect of radiation on DNA
Figure 1.5. Radiation effects at the molecular level
Figure 1.6. Radiation induced damages to DNA
Figure 1.7. Fate of a cell after radiation exposure
Figure 1.8. Carcinogenesis
Figure 1.9. Tumour metastasis
Figure 1.10. Morphological events in apoptosis and necrosis
Figure 1.11. Schematic representation of extrinsic and intrinsic pathways of apoptotic cell death
Figure 2.1. Trypan blue dye exclusion method showing blue coloured dead cells and colourless viable cells
Figure 2.2. Acridine orange/ethidium bromide (AO/EB) double staining showing normal, apoptotic and necrotic cells
Figure 2.3. May Grunwalde-Giemsa staining showing, normal cell and apoptotic cell
Figure 2.4. Representative images of normal and irradiated cells following comet assay
Figure 2.5. Representative images of micronucleated and normal reticulocytes
Figure 2.6. Representative images of radiation-induced chromosomal damages in mouse cell in vivo.
Figure 2.7. Representative images of radiation-induced chromosomal damages in human blood ex vivo.
Figure 3.1. Chemical structure of Sesamol
Figure 3.2.(a). X-ray diffraction patterns of SN, SNSM and SNGA
Figure 3.2.(b). Scanning electron microscopic images of SN and SNSM
Figure 3.3. ABTS radical scavenging activity of SN (A), SM (B) and their complex SNSM (C) at different time and % inhibition of ABTS radical at their various concentrations (D).

Figure 3.4. Reduction of DPPH in the presence of various concentrations (in mM) of SN, SM and their complex SNSM.

Figure 3.5. Hydroxyl radical scavenging potential of SN, SM and their complex SNSM at their various concentrations (in mM).

Figure 3.6. Effect of SN, SM and their complex SNSM on carrageenan induced paw oedema in mice.

Figure 3.7. Effect of SN, SM and their complex SNSM on dextran induced paw oedema in mice.

Figure 3.8. Effect of SM, SN and their complex SNSM on formalin induced paw oedema in mice.

Figure 3.9. Effect of SN, SM and SNSM on 25 Gy γ-radiation induced lipid peroxidation in mouse liver homogenate.

Figure 3.10. Effect of 1 mM SN, SM and SNSM on γ-radiation (0-25 Gy) induced lipid peroxidation in mouse liver homogenate.

Figure 3.11.(a). Changes in the lipid peroxidation levels expressed as MDA in nanomoles/mg protein in liver tissue homogenates of whole body irradiated mice (radiation dose 2 Gy, 4 Gy and 8 Gy) with and without oral administration of SN, SM or SNSM.

Figure 3.11.(b). Changes in the lipid peroxidation levels expressed as MDA in nanomoles/mg protein in kidney tissue homogenates of whole body irradiated mice (radiation dose 2 Gy, 4 Gy and 8 Gy) with and without oral administration of SN, SM or SNSM.

Figure 3.11.(c). Changes in the lipid peroxidation levels expressed as MDA in nanomoles/mg protein in brain tissue homogenates of whole body irradiated mice (radiation dose 2 Gy, 4 Gy and 8 Gy) with and without oral administration of SN, SM or SNSM.

Figure 3.11.(d). Changes in the lipid peroxidation levels expressed as MDA in nanomoles/mg protein in gastrointestinal mucosa of whole body irradiated mice (radiation dose 2 Gy, 4 Gy and 8 Gy) with and without oral administration of SN, SM or SNSM.

Figure 3.12.(a). Effect of oral administration of SN, SM and SNSM on WBC count in mice exposed to 6 Gy whole body gamma-radiation.
Figure 3.12.(b). Effect of oral administration of SN, SM and SNSM on RBC count in mice exposed to 6 Gy whole body gamma-radiation.

Figure 3.12.(c). Effect of oral administration of SN, SM and SNSM on Hb content in mice exposed to 6 Gy whole body gamma-radiation.

Figure 3.12.(d). Effect of oral administration of SN, SM and SNSM on blood GSH levels in mice exposed to 6 Gy whole body gamma-radiation.

Figure 3.12.(e). Effect of oral administration of SN, SM and SNSM on bone marrow cellularity in mice exposed to 6 Gy whole body gamma-radiation.

Figure 3.13.(a). Effect of SN, SM and SNSM on spleen colony formation in mice exposed to 6 Gy whole-body gamma-radiation.

Figure 3.13.(b). Effect of SN, SM and SNSM on spleen weight in mice exposed to 6 Gy whole-body gamma-radiation.

Figure 3.14. Effect of SN, SM and SNSM on gastrointestinal injury of mice after whole body irradiation.

Figure 3.15.(a). Effect of SN, SM and SNSM on radiation-induced mortality in mice exposed to a lethal dose of 10 Gy whole-body gamma-radiation.

Figure 3.15.(b). Effect of SN, SM and SNSM on radiation-induced body weight loss in mice exposed to a lethal dose of 10 Gy whole-body gamma-radiation.

Figure 3.16.(a). Effect of SN, SM and SNSM on gamma-radiation induced plasmid DNA (pBR 322) damage.

Figure 3.16.(b). % of CCC form of pBR 322 DNA remaining after radiation exposure (25 Gy) in the presence and absence of SN, SM and SNSM at different concentrations.

Figure 3.16.(c). Effect of 1 mM SM, SN and SNSM on gamma-radiation (0-20 Gy) induced plasmid DNA (pBR 322) damage.

Figure 3.16.(d). Protection of pBR 322 DNA by 1 mM SN, SM and SNSM against different doses of gamma radiation (0-20 Gy).

Figure 3.17. Comet parameters of genomic DNA from mouse peripheral blood leukocytes exposed to 6 Gy γ-radiation, presenting the effect of different concentrations of SN, SM and SNSM on the radiation induced DNA strand-breaks.

Figure 3.18. Effect of 1 mM SN, SM and SNSM on DNA damage in human blood leukocytes induced by γ-radiation (0-8 Gy) exposure, analysed by comet assay.
Figure 3.19. Representative photographs of 4 Gy γ-irradiation human blood leukocytes in presence and absence of SM or SNSM, silver-stained after alkaline single cell gel electrophoresis.

Figure 3.20.(a). Effect of oral administration of SN, SM or SNSM on DNA damage in murine blood leukocytes induced by whole body exposure to gamma radiation (0–8 Gy) analyzed by alkaline comet assay.

Figure 3.20.(b). Effect of oral administration of SN, SM or SNSM on DNA damage in murine bone marrow cells induced by whole body exposure to gamma radiation (0–8 Gy) analyzed by alkaline comet assay.

Figure 3.20.(c). Effect of oral administration of SN, SM or SNSM on DNA damage in murine spleenocytes induced by whole body exposure to gamma radiation (0–8 Gy) analyzed by alkaline comet assay.

Figure 3.20.(d). Effect of oral administration of SN, SM or SNSM on DNA damage in murine brain cells induced by whole body exposure to gamma radiation (0–8 Gy) analyzed by alkaline comet assay.

Figure 3.21.(a). Effect of post-irradiation treatment with SN, SM or SNSM on repair of damaged cellular DNA in mouse peripheral blood leukocytes exposed to 4 Gy gamma radiation ex vivo, in terms of decrease in comet parameters - % DNA in tail, tail length, tail moment and Olive tail moment at different time intervals.

Figure 3.21.(b). Effect of post-irradiation treatment with SN, SM or SNSM on repair of damaged cellular DNA in mouse peripheral blood leukocytes exposed to 4 Gy gamma radiation ex vivo, expressed as Cellular DNA Repair Index (CRI).

Figure 3.22.(a). Effect of post-irradiation oral administration of SN, SM or SNSM on repair of damaged cellular DNA in peripheral blood leukocytes of mouse exposed to 4 Gy whole body gamma radiation in vivo, in terms of decrease in comet parameters - % DNA in tail, tail length, tail moment and Olive tail moment at different time intervals.

Figure 3.22.(b). Effect of post-irradiation oral administration of SN, SM or SNSM on repair of damaged cellular DNA in peripheral blood leukocytes of mouse exposed to 4 Gy whole body gamma radiation in vivo, expressed as Cellular DNA Repair Index (CRI).

Figure 3.23.(a). Effect of SN, SM or SNSM and gamma-radiation on induction of DNA strand breaks in DLA cells, analysed by comet assay.

Figure 3.23.(b). Effect of SN, SM or SNSM and gamma-radiation on induction of DNA strand breaks in EAC cells, analysed by comet assay.
Figure 3.24.(a). Morphology of DLA cells on treatment with SN, SM or SNSM and gamma-radiation showing characteristics of apoptosis.

Figure 3.24.(b). Morphology of EAC cells on treatment with SN, SM or SNSM and gamma-radiation showing characteristics of apoptosis.

Figure 3.25.(a). Effect of SN, SM or SNSM and gamma-radiation on induction of apoptosis in DLA cells.

Figure 3.25.(b). Effect of SN, SM or SNSM and gamma-radiation on induction of apoptosis in EAC cells.

Figure 3.26. Effect of oral administration of SN, SM or SNSM and whole body gamma-irradiation on induction of DNA strand breaks in tumour cells of DLA solid tumour bearing mice, analysed by comet assay.

Figure 3.27. Effect of oral administration of SN, SM or SNSM and whole body gamma irradiation (4 Gy) on induction of apoptosis in DLA tumour cells of solid tumour bearing mice, and DNA showing ladder pattern on gel electrophoresis assay.

Figure 3.28. Effect of oral administration of SN, SM or SNSM and 4 Gy whole body gamma irradiation on tumor growth delay in DLA solid tumour bearing mice.

Figure 3.29. Effect of oral administration of SN, SM or SNSM on percentage increase in survival of EAC ascitic tumour bearing mice.

Figure 3.30.(a). Effect of SN, SM and SNSM administration on bone marrow cellularity in DOX treated tumour bearing mice.

Figure 3.30.(b). Effect of SN, SM and SNSM administration on bone marrow cellularity in CDDP treated tumour bearing mice.

Figure 3.31.(a). Effect of SN, SM and SNSM administration on micronuclei frequency in blood reticulocytes of DOX treated tumour bearing mice.

Figure 3.31.(a). Effect of SN, SM and SNSM administration on micronuclei frequency in blood reticulocytes of CDDP treated tumour bearing mice.

Figure 3.32. Effect of SN, SM and SNSM administration on DOX induced alterations in various serum parameters.

Figure 3.33. Effect of SN, SM and SNSM administration on DOX induced cardiotoxicity in mice.

Figure 3.34. Effect of SN, SM and SNSM administration on CDDP induced alterations in serum urea and creatinine levels.
Figure 3.35. Effect of SN, SM and SNSM administration on CDDP induced nephrotoxicity in mice.

Figure 4.1. Chemical structure of Gallic acid

Figure 4.2.(a). X-ray diffraction pattern of SNGA

Figure 4.2.(b). Scanning electron microscopic image of SNGA

Figure 4.3. ABTS radical scavenging activity of GA (A) and its silver nanoparticle complex SNGA (B) at different time and % inhibition of ABTS radical at their various concentrations (C).

Figure 4.4. Reduction of DPPH in the presence of various concentrations (in mM) of GA and its silver nanoparticle complex SNGA. (The concentration of SNGA is equivalent to GA concentration in SNGA)

Figure 4.5. Hydroxyl radical scavenging potential of GA and its silver nanoparticle complex SNGA at their various concentrations (in mM). (The concentration of SNGA is equivalent to GA concentration in SNGA)

Figure 4.6. Effect of GA and its silver nanoparticle complex SNGA on carrageenan induced paw oedema in mice.

Figure 4.7. Effect of GA and its silver nanoparticle complex SNGA on dextran induced paw oedema in mice.

Figure 4.8. Effect of GA and its silver nanoparticle complex SNGA on formalin induced paw oedema in mice.

Figure 4.9. Effect of GA and SNGA on 25 Gy γ-radiation induced lipid peroxidation in mouse liver homogenate. The lipid peroxidation values are expressed as nano moles of MDA per mg protein.

Figure 4.10. Effect of 1 mM GA and SNGA on γ-radiation (0-25 Gy) induced lipid peroxidation in mouse liver homogenate. The lipid peroxidation values are expressed as nano moles of MDA per mg protein.

Figure 4.11.(a). Changes in the lipid peroxidation levels expressed as MDA in nanomoles/mg protein in liver tissue homogenates of whole body irradiated mice (radiation dose 2 Gy, 4 Gy and 8 Gy) with and without oral administration of GA or SNGA.

Figure 4.11.(b). Changes in the lipid peroxidation levels expressed as MDA in nanomoles/mg protein in kidney tissue homogenates of whole body irradiated mice (radiation dose 2 Gy, 4 Gy and 8 Gy) with and without oral administration of GA or SNGA.
Figure 4.11.(c). Changes in the lipid peroxidation levels expressed as MDA in nanomoles/mg protein in brain tissue homogenates of whole body irradiated mice (radiation dose 2 Gy, 4 Gy and 8 Gy) with and without oral administration of GA or SNGA.

Figure 4.11.(d). Changes in the lipid peroxidation levels expressed as MDA in nanomoles/mg protein in gastrointestinal mucosa of whole body irradiated mice (radiation dose 2 Gy, 4 Gy and 8 Gy) with and without oral administration of GA or SNGA.

Figure 4.12.(a). Effect of oral administration of GA and SNGA on WBC count in mice exposed to 6 Gy whole body gamma-radiation.

Figure 4.12.(b). Effect of oral administration of GA and SNGA on RBC count in mice exposed to 6 Gy whole body gamma-radiation.

Figure 4.12.(c). Effect of oral administration of GA and SNGA on Hb content in mice exposed to 6 Gy whole body gamma-radiation.

Figure 4.12.(d). Effect of oral administration of GA and SNGA on blood GSH levels in mice exposed to 6 Gy whole body gamma-radiation.

Figure 4.12.(e). Effect of oral administration of GA and SNGA on bonemarrow cellularity in mice exposed to 6 Gy whole body gamma-radiation.

Figure 4.13.(a). Effect of GA and SNGA on spleen colony formation in mice exposed to 6 Gy whole-body gamma radiation.

Figure 4.13.(b). Effect of GA and SNGA on spleen weight in mice exposed to 6 Gy whole-body gamma radiation.

Figure 4.14. Effect of GA and SNGA on gastro intestinal injury of mice after whole body irradiation.

Figure 4.15.(a). Effect of GA and SNGA on radiation-induced mortality in mice exposed to a lethal dose of 10 Gy whole-body gamma radiation.

Figure 4.15.(b). Effect of GA and SNGA on radiation-induced body weight loss in mice exposed to a lethal dose of 10 Gy whole-body gamma radiation.

Figure 4.16.(a). Effect of GA and SNGA on gamma-radiation (0-30 Gy) induced plasmid DNA (pBR 322) damage.

Figure 4.16.(b). Protection of pBR 322 DNA by GA and SNGA against different doses of gamma radiation (0-30 Gy).

Figure 4.17. Comet parameters of genomic DNA from mouse peripheral blood leukocytes exposed to 6 Gy γ-radiation, presenting the effect of different concentrations of GA and SNGA on the radiation induced DNA strand-breaks.
Figure 4.18. Effect of 1 mM GA and SNGA on DNA damage in human blood leukocytes induced by γ-radiation (0-8 Gy) exposure, analysed by comet assay.

Figure 4.19. Representative photographs of 4 Gy γ-irradiation human blood leukocytes in presence and absence of GA or SNGA, silver-stained after alkaline single cell gel electrophoresis.

Figure 4.20.(a). Effect of oral administration of GA and SNGA on DNA damage in murine blood leukocytes induced by whole body exposure to gamma radiation (0–8 Gy) analyzed by alkaline comet assay.

Figure 4.20.(b). Effect of oral administration of GA and SNGA on DNA damage in murine bone marrow cells induced by whole body exposure to gamma radiation (0–8 Gy) analyzed by alkaline comet assay.

Figure 4.20.(c). Effect of oral administration of GA and SNGA on DNA damage in murine splenocytes induced by whole body exposure to gamma radiation (0–8 Gy) analyzed by alkaline comet assay.

Figure 4.21.(a). Effect of post-irradiation treatment with GA and SNGA on repair of damaged cellular DNA in mouse peripheral blood leukocytes exposed to 4 Gy gamma radiation ex vivo, in terms of decrease in comet parameters - % DNA in tail, tail length, tail moment and Olive tail moment at different time intervals.

Figure 4.21.(b). Effect of post-irradiation treatment with GA and SNGA on repair of damaged cellular DNA in mouse peripheral blood leukocytes exposed to 4 Gy gamma radiation ex vivo, expressed as Cellular DNA Repair Index (CRI).

Figure 4.22.(a). Effect of post-irradiation oral administration of GA and SNGA on repair of damaged cellular DNA in peripheral blood leukocytes of mouse exposed to 4 Gy whole body gamma radiation in vivo, in terms of decrease in comet parameters - % DNA in tail, tail length, tail moment and Olive tail moment at different time intervals.

Figure 4.22.(b). Effect of post-irradiation oral administration of GA and SNGA on repair of damaged cellular DNA in peripheral blood leukocytes of mouse exposed to 4 Gy whole body gamma radiation in vivo, expressed as Cellular DNA Repair Index (CRI).

Figure 4.23.(a). Effect of GA or SNGA and gamma-radiation on induction of DNA strand breaks in DLA cells, analysed by comet assay.

Figure 4.23.(b). Effect of GA or SNGA and gamma-radiation on induction of DNA strand breaks in EAC cells, analysed by comet assay.

Figure 4.24.(a). Morphology of DLA cells on treatment with GA or SNGA and gamma-radiation showing characteristics of apoptosis.
Figure 4.24.(b). Morphology of EAC cells on treatment with GA or SNGA and gamma-radiation showing characteristics of apoptosis.

Figure 4.25.(a). Effect of GA or SNGA and gamma-radiation on induction of apoptosis in DLA cells.

Figure 4.25.(b). Effect of GA or SNGA and gamma-radiation on induction of apoptosis in EAC cells.

Figure 4.26. Effect of oral administration of GA or SNGA and whole body gamma-irradiation on induction of DNA strand breaks in tumour cells of DLA solid tumour bearing mice, analysed by comet assay.

Figure 4.27. Effect of oral administration of GA or SNGA and whole body gamma irradiation (4 Gy) on induction of apoptosis in DLA tumour cells of solid tumour bearing mice, and DNA showing ladder pattern on gel electrophoresis assay.

Figure 4.28. Effect of oral administration of GA or SNGA and 4 Gy whole body gamma irradiation on tumour growth delay in DLA solid tumour bearing mice.

Figure 4.29. Effect of oral administration of GA or SNGA on percentage increase in survival of EAC ascitic tumour bearing mice.

Figure 4.30.(a). Effect of GA and SNGA administration on bone marrow cellularity in DOX treated tumour bearing mice.

Figure 4.30.(b). Effect of GA and SNGA administration on bone marrow cellularity in CDDP treated tumour bearing mice.

Figure 4.31.(a). Effect of GA and SNGA administration on micronuclei frequency in blood reticulocytes of DOX treated tumour bearing mice.

Figure 4.31.(b). Effect of GA and SNGA administration on micronuclei frequency in blood reticulocytes of CDDP treated tumour bearing mice.

Figure 4.32. Effect of GA and SNGA administration on DOX induced alterations in various serum parameters.

Figure 4.33. Effect of GA and SNGA administration on DOX induced cardiotoxicity in mice.

Figure 4.34. Effect of SN, SM and SNSM administration on CDDP induced alterations in serum urea and creatinine levels.

Figure 4.35. Effect of GA and SNGA administration on CDDP induced nephrotoxicity in mice.

Figure 5.1. Chemical structure of Doxorubicin (DOX)
Figure 5.2. Chemical structure of Sanazole (AK)

Figure 5.3. Cytotoxic effect of SN, AK, DOX and their complexes on DLA tumour cells.

Figure 5.4. Effect of SN, AK, DOX and their complexes on induction of DNA strand breaks in DLA cells, analysed by comet assay.

Figure 5.5.(a). Effect of SN, AK, DOX and their complexes on induction of apoptosis in DLA cells.

Figure 5.5.(b). Effect of SN, AK, DOX and their complexes on induction of apoptosis in DLA tumour cells, and DNA showing ladder pattern on gel electrophoresis assay.

Figure 5.6. Effect of oral administration of SN, AK, DOX and their complexes on tumour growth delay in DLA solid tumour bearing mice.

Figure 5.7. Effect of oral administration of SN, AK, DOX and their complexes on reduction of tumour growth in DLA solid tumour bearing mice.

Figure 6.1. *Ganoderma lucidum*

Figure 6.2.(a). Effect of oral administration of GLE and 4 Gy whole body gamma-irradiation on tumour growth delay in DLA solid tumour bearing mice.

Figure 6.2.(b). Effect of GLE and 4 Gy whole body gamma-irradiation on solid tumour growth in mice.

Figure 6.3.(a). Effect of oral administration of GLE on radiation induced cellular DNA damage in brain cells of DLA solid tumour bearing mice exposed to 4 Gy whole body gamma-radiation, assessed by comet assay.

Figure 6.3.(b). Effect of oral administration of GLE on radiation induced cellular DNA damage in bone marrow cells of DLA solid tumour bearing mice exposed to 4 Gy whole body gamma-radiation, assessed by comet assay.

Figure 6.3.(c). Effect of oral administration of GLE on radiation induced cellular DNA damage in blood leukocytes of DLA solid tumour bearing mice exposed to 4 Gy whole body gamma-radiation, assessed by comet assay.

Figure 6.3.(d). Effect of oral administration of GLE on radiation induced cellular DNA damage in tumour cells of DLA solid tumour bearing mice exposed to 4 Gy whole body gamma-radiation, assessed by comet assay.

Figure 6.3.(e). Photographs of silver stained comets from cells of different tissues of tumour bearing Swiss albino mice, orally administered with GLE and exposed to whole body 4 Gy gamma radiation.