LIST OF TABLES

Table 1.1. Drugs associated with oxidative stress and organ toxicities

Table 3.1. Extent of membrane peroxidation (MDA) and levels of tissue antioxidants GSH and GPx in various tissues of Swiss albino mice (n=6) administered with SN, SM or SNSM for 14 days.

Table 3.2. Levels of various serum marker enzymes in Swiss albino mice (n=6) administered with SN, SM or SNSM for 14 days.

Table 3.3.(a). Effect of oral administration of SN, SM and SNSM in gamma-radiation induced alterations in endogenous antioxidant levels (GPx, SOD and GSH) in liver homogenates of whole body irradiated (2 Gy, 4 Gy and 8 Gy) mice.

Table 3.3.(b). Effect of oral administration of SN, SM and SNSM in gamma-radiation induced alterations in endogenous antioxidant levels (GPx, SOD and GSH) in kidney homogenates of whole body irradiated (2 Gy, 4 Gy and 8 Gy) mice.

Table 3.3.(c). Effect of oral administration of SN, SM and SNSM in gamma-radiation induced alterations in endogenous antioxidant levels (GPx, SOD and GSH) in brain homogenates of whole body irradiated (2 Gy, 4 Gy and 8 Gy) mice.

Table 3.3.(d). Effect of oral administration of SN, SM and SNSM in gamma-radiation induced alterations in endogenous antioxidant levels (GPx, SOD and GSH) in gastrointestinal mucosa homogenates of whole body irradiated (2 Gy, 4 Gy and 8 Gy) mice.

Table 3.4. Effect of oral administration of SN, SM or SNSM on radiation-induced micronuclei formation in peripheral blood reticulocytes of mice exposed to whole body gamma-radiation. 2000 peripheral blood reticulocytes were observed and % of micronucleated reticulocytes was scored.

Table 3.5.(a). Effect of SN, SM and SNSM on gamma-radiation (2 Gy) induced chromosomal aberrations and number of chromosomal aberrations per cell in human peripheral blood lymphocytes ex vivo.

Table 3.5.(b). Effect of SN, SM and SNSM on gamma-radiation (2 Gy) induced pulverization, polyploidy and SDC in human peripheral blood lymphocytes ex vivo.

Table 3.6.(a). Effect of oral administration of SN, SM and SNSM on gamma-radiation (2 Gy) induced chromosomal aberrations and number of chromosomal aberrations per cell in bone marrow of whole body irradiated mice.
Table 3.6.(b). Effect of oral administration of SN, SM and SNSM on gamma-radiation (2 Gy) induced pulverization, polyploidy and SDC in bone marrow cells of whole body irradiated mice.

Table 3.7. Effect of SN, SM or SNSM oral administration and gamma-irradiation on apoptosis induction in tumour cells of DLA solid tumour bearing mice.

Table 3.8. Effect of SN, SM or SNSM oral administration on survival advantage and percent increase in life span of EAC ascitic tumour bearing mice.

Table 3.9. Effect of SN, SM and SNSM administration on endogenous antioxidant status and membrane lipid peroxidation in heart and tumour tissues of DOX treated mice.

Table 3.10. Effect of SN, SM and SNSM administration on endogenous antioxidant status and membrane lipid peroxidation in kidney and tumour tissues of CDDP treated mice.

Table 4.1. Extent of membrane peroxidation (MDA) and levels of tissue antioxidants GSH and GPx in various tissues of Swiss albino mice administered with GA or SNGA for 14 days (n=6).

Table 4.2. Levels of various serum marker enzymes in Swiss albino mice administered with GA or SNGA for 14 days (n=6).

Table 4.3.(a). Effect of oral administration of GA and SNGA in gamma-radiation induced alterations in endogenous antioxidant levels (GPx, SOD and GSH) in liver homogenates of whole body irradiated (2 Gy, 4 Gy and 8 Gy) mice.

Table 4.3.(b). Effect of oral administration of GA and SNGA in gamma-radiation induced alterations in endogenous antioxidant levels (GPx, SOD and GSH) in kidney homogenates of whole body irradiated (2 Gy, 4 Gy and 8 Gy) mice.

Table 4.3.(c). Effect of oral administration of GA and SNGA in gamma-radiation induced alterations in endogenous antioxidant levels (GPx, SOD and GSH) in brain homogenates of whole body irradiated (2 Gy, 4 Gy and 8 Gy) mice.

Table 4.3.(d). Effect of oral administration of GA and SNGA in gamma-radiation induced alterations in endogenous antioxidant levels (GPx, SOD and GSH) in gastrointestinal mucosa homogenates of whole body irradiated (2 Gy, 4 Gy and 8 Gy) mice.

Table 4.4. Effect of GA and SNGA administration on radiation-induced micronuclei formation in peripheral blood reticulocytes of mice exposed to whole body gamma-radiation. 2000 peripheral blood reticulocytes were observed per animal and % of micronucleated reticulocytes was scored.
Table 4.5.(a). Effect of GA and SNGA on gamma-radiation (2 Gy) induced chromosomal aberrations and number of chromosomal aberrations per cell in human peripheral blood lymphocytes \textit{ex vivo}.

Table 4.5.(b). Effect of GA and SNGA on gamma-radiation (2 Gy) induced pulverization, polyploidy and SDC in human peripheral blood lymphocytes \textit{ex vivo}.

Table 4.6.(a). Effect of oral administration of GA and SNGA on gamma-radiation (2 Gy) induced chromosomal aberrations and number of chromosomal aberrations per cell in bone marrow of whole body irradiated mice.

Table 4.6.(b). Effect of oral administration of GA and SNGA on gamma-radiation (2 Gy) induced pulverization, polyploidy and SDC in bone marrow cells of whole body irradiated mice.

Table 4.7. Effect of GA or SNGA oral administration and gamma-irradiation on apoptosis induction in tumour cells of DLA solid tumour bearing mice.

Table 4.8. Effect of GA or SNGA oral administration on survival advantage and percent increase in life span of EAC ascitic tumour bearing mice.

Table 4.9. Effect of GA and SNGA administration on endogenous antioxidant status and membrane lipid peroxidation in heart and tumour tissues of DOX treated mice.

Table 4.10. Effect of GA and SNGA administration on endogenous antioxidant status and membrane lipid peroxidation in kidney and tumour tissues of CDDP treated mice.