TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>OUTLINE OF RESEARCH</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>BREAST CANCER</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>MAMMOGRAPHY</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>TREATMENT AND SURGERY</td>
<td>15</td>
</tr>
<tr>
<td>1.5</td>
<td>PREVENTION</td>
<td>17</td>
</tr>
<tr>
<td>1.6</td>
<td>BREAST CANCER STATISTICS</td>
<td>18</td>
</tr>
<tr>
<td>1.7</td>
<td>COMPUTER AIDED DETECTION AND DIAGNOSISON</td>
<td>22</td>
</tr>
<tr>
<td>1.8</td>
<td>OBJECTIVE AND METHODOLOGY</td>
<td>30</td>
</tr>
<tr>
<td>1.9</td>
<td>MAMMOGRAM DATABASES</td>
<td>30</td>
</tr>
<tr>
<td>1.10</td>
<td>ORGANIZATION OF THESIS</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>CURVELET BASED NOISE REMOVAL AND NEW CONTRAST ENHANCEMENT METHOD</td>
<td>33</td>
</tr>
<tr>
<td>2.1</td>
<td>INTRODUCTION</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>LITERATURE REVIEW</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>NOISE REDUCTION</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Selective Median Filtering</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Adaptive Median Filtering</td>
<td>41</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Fast Discrete Curvelet Transform via Wedge Wrapping</td>
<td>42</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Fast Discrete Curvelet Transform via UneqSpaced Fast Fourier Transform</td>
<td>42</td>
</tr>
<tr>
<td>2.4</td>
<td>CONTRAST ENHANCEMENT METHODOLOGIES</td>
<td>45</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Contrast Limited Adaptive Histogram Equalization Method</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Two Dimensional Redundant Dyadic Wavelet Transform Method</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Wavelet linear stretching method</td>
<td>47</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Wavelet shrinkage method</td>
<td>47</td>
</tr>
<tr>
<td>2.4.2.3</td>
<td>Wavelet background approximation method</td>
<td>48</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Local Range Modification Method</td>
<td>48</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Modified Local Range Modification Method</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>RESULT OF NOISE REDUCTION METHODS</td>
<td>51</td>
</tr>
<tr>
<td>2.6</td>
<td>RESULT OF CONTRAST ENHANCEMENT METHODS</td>
<td>61</td>
</tr>
<tr>
<td>2.7</td>
<td>SIGNIFICANCE OF PROPOSED PREPROCESSING METHOD</td>
<td>71</td>
</tr>
<tr>
<td>2.8</td>
<td>SUMMARY</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>SIMILARITY AND DISCONTINUITY BASED SEGMENTATION OF REGION OF INTEREST</td>
<td>73</td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>LITERATURE REVIEW</td>
<td>75</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>3.3</td>
<td>DISCONTINUITY APPROACH</td>
<td>78</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Sobel Edge Detection</td>
<td>81</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Prewitt Edge Detection</td>
<td>83</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Roberts Edge Detection</td>
<td>85</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Difference of Gaussian Edge Detection</td>
<td>86</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Zero Cross Edge Detection</td>
<td>87</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Canny Edge Detection</td>
<td>88</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Laplacian of Gaussian Edge Detection</td>
<td>90</td>
</tr>
<tr>
<td>3.4</td>
<td>RESULTS OF DISCONTINUITY APPROACH</td>
<td>95</td>
</tr>
<tr>
<td>3.5</td>
<td>SIMILARITY BASED APPROACH</td>
<td>101</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Compression Method</td>
<td>101</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Histogram Method</td>
<td>102</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Region Growing Method</td>
<td>103</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Cloud Model Based Region Growing Segmentation Method</td>
<td>104</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Split and Merge Method</td>
<td>106</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Partial Differential Equation Method</td>
<td>107</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Parametric Method</td>
<td>107</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Level Set Method</td>
<td>108</td>
</tr>
<tr>
<td>3.5.9</td>
<td>Graph Partitioning Method</td>
<td>108</td>
</tr>
<tr>
<td>3.5.10</td>
<td>WaterShed Segmentation Method</td>
<td>109</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.7</td>
<td>COMBINED RESULTS OF PREPROCESSING AND SEGMENTATION</td>
<td>122</td>
</tr>
<tr>
<td>3.8</td>
<td>SIGNIFICANCE OF PROPOSED SEGMENTATION METHOD</td>
<td>126</td>
</tr>
<tr>
<td>3.9</td>
<td>SUMMARY</td>
<td>127</td>
</tr>
<tr>
<td>4</td>
<td>FUZZY C MEANS CLUSTERING AND STATISTICAL MOMENTS CALCULATION</td>
<td>128</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>128</td>
</tr>
<tr>
<td>4.2</td>
<td>LITERATURE REVIEW ON COMPUTER AIDED DETECTION AND DIAGNOSIS</td>
<td>128</td>
</tr>
<tr>
<td>4.3</td>
<td>CLUSTERING METHODS FOR FEATURE DETECTION AND CLASSIFICATION</td>
<td>135</td>
</tr>
<tr>
<td>4.4</td>
<td>TYPES OF CLUSTERING</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>4.4.1 Connectivity Based Clustering</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>4.4.2 Centroid Based Clustering</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>4.4.3 Distribution Based Clustering</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>4.4.4 Density Based Clustering</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>4.4.5 Mean Shift Clustering</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>4.4.6 Fuzzy C Means Clustering</td>
<td>143</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.8</td>
<td>FLOWCHART OF THE PROPOSED COMPUTER AIDED DETECTION METHOD</td>
<td>153</td>
</tr>
<tr>
<td>4.9</td>
<td>SUMMARY</td>
<td>154</td>
</tr>
<tr>
<td>5</td>
<td>RESULTS AND DISCUSSION</td>
<td>155</td>
</tr>
<tr>
<td>5.1</td>
<td>PREPROCESSING</td>
<td>155</td>
</tr>
<tr>
<td>5.2</td>
<td>SEGMENTATION</td>
<td>158</td>
</tr>
<tr>
<td>5.3</td>
<td>DETECTION</td>
<td>159</td>
</tr>
<tr>
<td>5.4</td>
<td>SUMMARY</td>
<td>164</td>
</tr>
<tr>
<td>6</td>
<td>CONCLUSION</td>
<td>166</td>
</tr>
<tr>
<td>7</td>
<td>FUTURE SCOPE</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>182</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>1.1</td>
<td>Some of the existing CAD and CADi systems with their detection accuracy</td>
<td>29</td>
</tr>
<tr>
<td>1.2</td>
<td>Mammogram databases</td>
<td>31</td>
</tr>
<tr>
<td>2.1</td>
<td>Filters involved in noise reduction and contrast enhancement</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>MSE and PSNR comparison of proposed noise reduction method with the existing methods</td>
<td>52</td>
</tr>
<tr>
<td>2.3</td>
<td>Percentage of contrast improvement</td>
<td>61</td>
</tr>
<tr>
<td>2.4</td>
<td>MSE and PSNR comparison of proposed contrast enhancement method with the existing methods</td>
<td>62</td>
</tr>
<tr>
<td>3.1</td>
<td>Mammogram image segmentation techniques</td>
<td>77</td>
</tr>
<tr>
<td>3.2</td>
<td>Description of some of the important edge detection methods</td>
<td>93</td>
</tr>
<tr>
<td>3.3</td>
<td>Description of some of the similarity based segmentation techniques</td>
<td>115</td>
</tr>
<tr>
<td>4.1</td>
<td>Diagnosis results</td>
<td>134</td>
</tr>
<tr>
<td>4.2</td>
<td>Descriptors of texture based on intensity histograms</td>
<td>150</td>
</tr>
<tr>
<td>4.3</td>
<td>Measurement of texture features for the sample mammogram images</td>
<td>151</td>
</tr>
<tr>
<td>5.1</td>
<td>Detection accuracy comparison of proposed method with the existing methods</td>
<td>157</td>
</tr>
<tr>
<td>5.2</td>
<td>Mammogram image classification based on texture features</td>
<td>160</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.3</td>
<td>Detection accuracy comparison of proposed method with the existing methods</td>
<td>162</td>
</tr>
<tr>
<td>5.4</td>
<td>Results of the sample mammogram images tested</td>
<td>163</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Early signs of breast cancer</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Components of a mammogram image</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Two views of mammogram image</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Types of breast cancer</td>
<td>24</td>
</tr>
<tr>
<td>1.5</td>
<td>Processing of general CAD and CADi system</td>
<td>25</td>
</tr>
<tr>
<td>2.1</td>
<td>Estimation of regional maximum and minimum values for LRM</td>
<td>49</td>
</tr>
<tr>
<td>2.2</td>
<td>Estimation of regional maximum and minimum values for MLRM</td>
<td>50</td>
</tr>
<tr>
<td>2.3</td>
<td>Result of proposed noise reduction method for mdb001</td>
<td>53</td>
</tr>
<tr>
<td>2.4</td>
<td>Histogram of proposed noise reduction method for mdb001</td>
<td>53</td>
</tr>
<tr>
<td>2.5</td>
<td>Result of proposed noise reduction method for mdb004</td>
<td>54</td>
</tr>
<tr>
<td>2.6</td>
<td>Histogram of proposed noise reduction method for mdb004</td>
<td>54</td>
</tr>
<tr>
<td>2.7</td>
<td>Result of proposed noise reduction method for mdb072</td>
<td>55</td>
</tr>
<tr>
<td>2.8</td>
<td>Histogram of proposed noise reduction method for mdb072</td>
<td>56</td>
</tr>
<tr>
<td>2.9</td>
<td>Result of proposed noise reduction method for mdb075</td>
<td>56</td>
</tr>
<tr>
<td>2.10</td>
<td>Histogram of proposed noise reduction method for mdb075</td>
<td>57</td>
</tr>
<tr>
<td>2.11</td>
<td>Result of proposed noise reduction method for mdb218</td>
<td>58</td>
</tr>
<tr>
<td>2.12</td>
<td>Histogram of proposed noise reduction method for mdb218</td>
<td>58</td>
</tr>
<tr>
<td>2.13</td>
<td>Result of proposed noise reduction method for mdb219</td>
<td>59</td>
</tr>
<tr>
<td>2.14</td>
<td>Histogram of proposed noise reduction method for mdb219</td>
<td>59</td>
</tr>
<tr>
<td>2.15</td>
<td>Result of proposed noise reduction method for mdb322</td>
<td>60</td>
</tr>
<tr>
<td>2.16</td>
<td>Histogram of proposed noise reduction method for mdb322</td>
<td>60</td>
</tr>
<tr>
<td>2.17</td>
<td>Result of MLRM enhancement for mdb001</td>
<td>63</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2.18</td>
<td>Histogram of MLRM enhancement method for mdb001</td>
<td>63</td>
</tr>
<tr>
<td>2.19</td>
<td>Result of MLRM enhancement for mdb004</td>
<td>64</td>
</tr>
<tr>
<td>2.20</td>
<td>Histogram of MLRM enhancement method for mdb004</td>
<td>65</td>
</tr>
<tr>
<td>2.21</td>
<td>Result of MLRM enhancement for mdb072</td>
<td>65</td>
</tr>
<tr>
<td>2.22</td>
<td>Histogram of MLRM enhancement method for mdb072</td>
<td>66</td>
</tr>
<tr>
<td>2.23</td>
<td>Result of MLRM enhancement for mdb075</td>
<td>67</td>
</tr>
<tr>
<td>2.24</td>
<td>Histogram of MLRM enhancement method for mdb075</td>
<td>67</td>
</tr>
<tr>
<td>2.25</td>
<td>Result of MLRM enhancement for mdb218</td>
<td>68</td>
</tr>
<tr>
<td>2.26</td>
<td>Histogram of MLRM enhancement method for mdb218</td>
<td>68</td>
</tr>
<tr>
<td>2.27</td>
<td>Result of MLRM enhancement for mdb219</td>
<td>69</td>
</tr>
<tr>
<td>2.28</td>
<td>Histogram of MLRM enhancement method for mdb219</td>
<td>70</td>
</tr>
<tr>
<td>2.29</td>
<td>Result of MLRM enhancement for mdb322</td>
<td>70</td>
</tr>
<tr>
<td>2.30</td>
<td>Histogram of MLRM enhancement method for mdb322</td>
<td>71</td>
</tr>
<tr>
<td>3.1</td>
<td>Techniques involved in mammogram image segmentation</td>
<td>74</td>
</tr>
<tr>
<td>3.2</td>
<td>Pattern table for LoG method</td>
<td>91</td>
</tr>
<tr>
<td>3.3</td>
<td>Operation of LoG method</td>
<td>92</td>
</tr>
<tr>
<td>3.4</td>
<td>Result of edge detection methods for mdb001</td>
<td>96</td>
</tr>
<tr>
<td>3.5</td>
<td>Result of edge detection methods for mdb004</td>
<td>97</td>
</tr>
<tr>
<td>3.6</td>
<td>Result of edge detection methods for mdb072</td>
<td>97</td>
</tr>
<tr>
<td>3.7</td>
<td>Result of edge detection methods for mdb075</td>
<td>98</td>
</tr>
<tr>
<td>3.8</td>
<td>Result of edge detection methods for mdb218</td>
<td>99</td>
</tr>
<tr>
<td>3.9</td>
<td>Result of edge detection methods for mdb219</td>
<td>100</td>
</tr>
<tr>
<td>3.10</td>
<td>Result of edge detection methods for mdb322</td>
<td>100</td>
</tr>
<tr>
<td>3.11</td>
<td>Result of MLRM and LoG segmentation for mdb001</td>
<td>117</td>
</tr>
<tr>
<td>3.12</td>
<td>Result of MLRM and LoG segmentation for mdb004</td>
<td>118</td>
</tr>
<tr>
<td>3.13</td>
<td>Result of MLRM and LoG segmentation for mdb072</td>
<td>119</td>
</tr>
<tr>
<td>3.14</td>
<td>Result of MLRM and LoG segmentation for mdb075</td>
<td>119</td>
</tr>
<tr>
<td>3.15</td>
<td>Result of MLRM and LoG segmentation for mdb218</td>
<td>120</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.16</td>
<td>Result of MLRM and LoG segmentation for mdb219</td>
<td>121</td>
</tr>
<tr>
<td>3.17</td>
<td>Result of MLRM and LoG segmentation for mdb322</td>
<td>121</td>
</tr>
<tr>
<td>3.18</td>
<td>Results of all the methods tested in this work for mdb001</td>
<td>122</td>
</tr>
<tr>
<td>3.19</td>
<td>Results of all the methods tested in this work for mdb004</td>
<td>123</td>
</tr>
<tr>
<td>3.20</td>
<td>Results of all the methods tested in this work for mdb072</td>
<td>123</td>
</tr>
<tr>
<td>3.21</td>
<td>Results of all the methods tested in this work for mdb075</td>
<td>124</td>
</tr>
<tr>
<td>3.22</td>
<td>Results of all the methods tested in this work for mdb218</td>
<td>125</td>
</tr>
<tr>
<td>3.23</td>
<td>Results of all the methods tested in this work for mdb219</td>
<td>125</td>
</tr>
<tr>
<td>3.24</td>
<td>Results of all the methods tested in this work for mdb322</td>
<td>126</td>
</tr>
<tr>
<td>4.1</td>
<td>Simple CAD and CADi system</td>
<td>131</td>
</tr>
<tr>
<td>4.2</td>
<td>Flowchart showing the stages involved in the diagnosis of abnormalities</td>
<td>132</td>
</tr>
<tr>
<td>4.3</td>
<td>ROC and FROC curves</td>
<td>133</td>
</tr>
<tr>
<td>4.4</td>
<td>Techniques involved in mammogram image analysis</td>
<td>135</td>
</tr>
<tr>
<td>4.5</td>
<td>Results of FCM clustering method for mdb001</td>
<td>145</td>
</tr>
<tr>
<td>4.6</td>
<td>Results of FCM clustering method for mdb004</td>
<td>146</td>
</tr>
<tr>
<td>4.7</td>
<td>Results of FCM clustering method for mdb072</td>
<td>146</td>
</tr>
<tr>
<td>4.8</td>
<td>Results of FCM clustering method for mdb075</td>
<td>147</td>
</tr>
<tr>
<td>4.9</td>
<td>Results of FCM clustering method for mdb218</td>
<td>147</td>
</tr>
<tr>
<td>4.10</td>
<td>Results of FCM clustering method for mdb219</td>
<td>148</td>
</tr>
<tr>
<td>4.11</td>
<td>Results of FCM clustering method for mdb322</td>
<td>148</td>
</tr>
<tr>
<td>4.12</td>
<td>Flowchart of the CAD process adopted in the research</td>
<td>153</td>
</tr>
<tr>
<td>5.1</td>
<td>ROC plot for the MLRM enhancement</td>
<td>156</td>
</tr>
<tr>
<td>5.2</td>
<td>ROC plot for the MLRM and LoG segmentation</td>
<td>162</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

CG\(^{-1}\) - Cloud Generator backward
CG - Cloud Generator forward
G - Gradient Magnitude
Θ - Gradient’s Direction
σ - Standard Deviation
* - Two Dimensional Convolution

Abbreviations

ACR - American College of Radiology
BI-RADS - Breast Imaging-Reporting And Data System
BSGI - Breast Specific Gamma Imaging
CAD - Computer Aided Detection
CADi - Computer Aided Diagnosis
CADq - CAD quantifies
CALMA - Computer Aided Library in MAmmography
CAST - Computer Aided Simple Triage
CC - CranioCaudal
CLAHE - Contrast Limited Adaptive Histogram Equalization
CLINK - Complete LINKage
CLS - CurviLinear Structures
DDSM - Digital Database for Screening Mammography
DoG - Difference of Gaussian
DWT - Directional Wavelet Transform
EM - Expectation Maximization
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCM</td>
<td>Fuzzy C Means</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FDCT</td>
<td>Fast Discrete Curvelet Transform</td>
</tr>
<tr>
<td>FFDM</td>
<td>Full Field Digital Mammography</td>
</tr>
<tr>
<td>FN</td>
<td>False Negative</td>
</tr>
<tr>
<td>FNAC</td>
<td>Fine Needle Aspiration and Cytology</td>
</tr>
<tr>
<td>FP</td>
<td>False Positive</td>
</tr>
<tr>
<td>FPF</td>
<td>False Positive Fraction</td>
</tr>
<tr>
<td>FPI</td>
<td>False Positive Index</td>
</tr>
<tr>
<td>FROC</td>
<td>Free-response Receiver Operating Characteristics</td>
</tr>
<tr>
<td>GLHM</td>
<td>Gray Level Histogram Moments</td>
</tr>
<tr>
<td>GMI</td>
<td>Gradient Magnitude Intensity</td>
</tr>
<tr>
<td>HBCR</td>
<td>Hospital Based Cancer Registry</td>
</tr>
<tr>
<td>HIP</td>
<td>Hierarchical Image Property</td>
</tr>
<tr>
<td>HLMCCIP</td>
<td>H Lee Moffitt Cancer Center Imaging Program</td>
</tr>
<tr>
<td>HMT</td>
<td>Hidden Markov Tree</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent Component Analysis</td>
</tr>
<tr>
<td>LIM</td>
<td>Local Intensity Minimum</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratories</td>
</tr>
<tr>
<td>LoG</td>
<td>Laplacian of Gaussian</td>
</tr>
<tr>
<td>LRM</td>
<td>Local Range Modification</td>
</tr>
<tr>
<td>MBI</td>
<td>Molecular Breast Imaging</td>
</tr>
<tr>
<td>MDL</td>
<td>Minimum Description Length</td>
</tr>
<tr>
<td>MG</td>
<td>MammoGrid (Pan European MammoGrid)</td>
</tr>
<tr>
<td>MIAS</td>
<td>Mammographic Image Analysis Society</td>
</tr>
<tr>
<td>MLO</td>
<td>MedioLateral Oblique</td>
</tr>
<tr>
<td>MLRM</td>
<td>Modified Local Range Modification</td>
</tr>
<tr>
<td>MQSA</td>
<td>Mammography Quality Standards Act</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>NCRP</td>
<td>National Cancer Registry Program</td>
</tr>
<tr>
<td>PBCR</td>
<td>Population Based Cancer Registry</td>
</tr>
<tr>
<td>PEM</td>
<td>Positron Emission Mammography</td>
</tr>
<tr>
<td>PPV</td>
<td>Positive Predictive Value</td>
</tr>
<tr>
<td>PSNR</td>
<td>Peak Signal to Noise Ratio</td>
</tr>
<tr>
<td>QMF</td>
<td>Quadrature Mirror Filter</td>
</tr>
<tr>
<td>RBF</td>
<td>Radial Basis Function</td>
</tr>
<tr>
<td>RIC</td>
<td>Robust Information Clustering</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristics</td>
</tr>
<tr>
<td>RoI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>RoS</td>
<td>Regions of Suspicion</td>
</tr>
<tr>
<td>SGLD</td>
<td>Spatial Gray Level Dependence</td>
</tr>
<tr>
<td>SGLDM</td>
<td>Spatial Gray Level Difference Matrix</td>
</tr>
<tr>
<td>SLINK</td>
<td>Single LINKage</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>TD</td>
<td>Two Dimensional</td>
</tr>
<tr>
<td>TD RDWT</td>
<td>Two Dimensional Redundant Dyadic Wavelet Transform</td>
</tr>
<tr>
<td>TN</td>
<td>True Negative</td>
</tr>
<tr>
<td>TP</td>
<td>True Positive</td>
</tr>
<tr>
<td>TPF</td>
<td>True Positive Fraction</td>
</tr>
<tr>
<td>TSF</td>
<td>Tree Structured non linear Filter</td>
</tr>
<tr>
<td>TSWT</td>
<td>Tree Structured Wavelet Transform filter</td>
</tr>
<tr>
<td>UCSF</td>
<td>University of California at San Francisco</td>
</tr>
<tr>
<td>USFFT</td>
<td>UnequiSpaced Fast Fourier Transform</td>
</tr>
<tr>
<td>WBA</td>
<td>Wavelet Background Approximation</td>
</tr>
<tr>
<td>WCSS</td>
<td>Within Cluster Sum of Squares</td>
</tr>
<tr>
<td>WLS</td>
<td>Wavelet Linear Stretching</td>
</tr>
<tr>
<td>WS</td>
<td>Wavelet Shrinkage</td>
</tr>
</tbody>
</table>